Vol. 13, No. 1 Mac. 2019

文章编号:1673-9981(2019)01-0053-04

掺钨类金刚石薄膜制备工艺参数的正交分析研究*

张 程1,李福球1,谢思中2,林凯生1,朱晖朝1,张忠诚1

1. 广东省新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验 室,广东广州 510650;2. 湖南南方通用航空发动机有限公司,湖南 株洲 412000

摘 要:采用离子源技术制备掺钨类金刚石薄膜(W-DLC),为系统地探究各工艺参数对薄膜硬度的影响,设计了 L9(3⁴)正交试验方案,同时结合正交分析效应曲线分别研究了 C₂H₂流量、离子源电流、基体负偏压、钨靶电流对薄膜硬度的影响.结果表明:基体负偏压对薄膜硬度影响最大,其次为 C₂H₂流量和离子源电流,钨靶电流的影响最小;薄膜硬度随 C₂H₂流量的增大整体呈上升趋势,随离子源电流及偏压的增加而增加,随钨靶电流的增加而减小;工艺参数组合优选为 C₂H₂流量100 mL/min、离子源电流 8 A、负偏压 100 V、钨靶电流 4 A.该研究为后续进一步优化工艺,制备高性能类金刚石薄膜提供了重要的理论依据.

关键词:正交分析;类金刚石;薄膜;硬度

中图分类号:0484.4

文献标识码:A

类金刚石薄膜(DLC)主要是由碳原子 sp³杂化 键结构和 sp²杂化键结构相互交错的三维网络构成, 其具有硬度高、摩擦系数低、耐磨损等优异性能,在 装备机械、汽车、航空航天等领域中有广阔应用前 景,一直以来都是国内外研究的热点.然而,薄膜沉 积后的高内应力始终影响着薄膜的发展,为降低薄 膜内应力,通过掺入金属或非金属元素(W,Ti及Si 等)来降低薄膜内应力,改善薄膜韧性.金刚石复合 薄膜掺杂金属主要为纳米结构的纳米晶、金属碳化 物等,它们非均匀地嵌埋在连续的非晶碳基网络结 构中,从而形成典型的纳米晶/非晶复合结构,通过 纳米晶/非晶复合结构来提升薄膜的综合性能^[1-2].

在制备掺钨类金刚石(W-DLC)薄膜时,工艺参数如基体负偏压、钨靶电流、沉积温度、气体流量和 配比、离子源电流等对薄膜的性能如硬度、结合力及 摩擦学性能的影响不同.如何快速合理的设计实验, 找出影响薄膜硬度的关键因素,并对关键因素进行 调控,对获得性能优异的类金刚石薄膜尤为重要.正 交实验法是一种高效、快速、经济的方法,其特点在 于从数理统计原理出发,在全面试验中选取具有代 表性的点进行试验,从而缩小试验参数的范围.本研 究以乙炔流量、离子源电流、基体负偏压和钨靶电流 四个因素设计正交试验,结合正交分析效应曲线图 研究不同水平下薄膜硬度的变化规律,为后续进一 步优化工艺制备高性能类金刚石薄膜提供重要的理 论依据.

1 试验部分

试验的基体材料为 Co 含量 6% 的 YG6 硬质合 金,采用离子源技术制备掺钨类金刚石薄膜(W-DLC).

首先对基体进行清洗烘干,在进炉镀膜之前用 丙酮擦拭后再进行装挂.镀膜前将炉腔真空抽至 2.5×10⁻²Pa,通入氩气与氢气的混合气体至气压为 2.3 Pa,用离子源结合高偏压对样品表面进行刻蚀

收稿日期:2018-12-13

^{*}基金项目:广东省科学院实施创新驱动发展能力建设专项资金项目(2018GDASCX-0402)

作者简介:张程(1990-),男,湖南邵阳人,硕士研究生,主要从事真空镀膜方面的研究.

清洗 35 min,刻蚀完后关闭氢气进气阀门,再开启电 弧 Cr 靶加上高偏压对基体进行刻蚀 6 min,随后沉 积 Cr 打底层 15 min. 然后开启离子源, 通入氮气、氩 气沉积 CrN 层 35 min,再同时通入氮气、乙炔来沉积 CrCN 层 10 min. 最后开启磁控钨靶, 在试验设定的 乙炔气体流量、离子源电流、基体负偏压、钨靶电流 参数水平范围内,沉积掺钨类金刚石薄膜(W-DLC). 表1为沉积 W-DLC 薄膜的各工艺参数的正 交试验因素水平表.

表1 因素水平表 Table 1 Factors and levels

水平	因素					
	乙炔流量	离子源电流	负偏压	钨靶电流		
	$/(mL \cdot min^{-1})$	/A	$/\mathrm{V}$	/A		
	А	В	С	D		
1	60	4	50	4		
2	80	6	100	6		
3	100	8	200	8		

试验仪器:用北京丹普研发的多功能离子镀膜 机,制备掺钨类金刚石薄膜:用 JTA-9120T 型全自动 超声波清洗机,对基体进行清洗烘干;用 MH-5 型显 微硬度计测定薄膜硬度,测试条件为大气常温、载荷 25 g、保压 15 s.

正交分析 2

2.1 正交试验结果

工艺参数对薄膜硬度的影响,是由正交分析结 果中极差值大小所决定的.表2为不同工艺参数下, 掺钨类金刚石薄膜硬度的正交试验结果.由表2可 知:对薄膜硬度而言,负偏压影响最大,乙炔流量影 响次之,离子源电流影响再次之,钨靶电流影响最 小,即负偏压 > 乙炔流量 > 离子源电流 > 钨靶电流.

2.2 各参数对薄膜硬度的影响

从正交试验结果出发,根据正交分析结果绘制 各参数相应的效应曲线图,结合效应曲线图,初步分 析乙炔流量、离子源电流、负偏压以及钨靶电流对薄 膜硬度的影响规律.

		· · · · · · · · · · · · · · · · · · ·			
	Tab	le 2 Theorthog	gonal analysis o	f film hardness	
编号	因素				毎度店/Ⅱ \
	А	В	С	D	₩度值(ΠV _{0.025})
1	1	1	1	1	1437
2	1	2	2	2	1618
3	1	3	3	3	1876
4	2	1	2	3	1386
5	2	2	3	1	1895
6	2	3	1	2	1576
7	3	1	3	2	1992
8	3	2	1	3	1625
9	3	3	2	1	2067
<i>K</i> 1	4931	4815	4638	5399	タ田圭业亚
K2	4857	5138	5071	5186	各因家水平 指标求和
K3	5684	5519	5763	4887	
<i>K</i> 1/3	1643. 667	1605.000	1546.000	1799. 667	各因素水平指标 求和的均值
K2/3	1619.000	1712. 667	1690. 333	1728.667	
K3/3	1894. 667	1839. 667	1921.000	1629.000	
极差	275.667	234. 667	375.000	170. 667	_

	表 2	薄膜硬度正交试验结果
able 2	Theor	thogonal analysis of film hardness

2.2.1 乙炔流量的影响

图1为乙炔流量对薄膜硬度的影响曲线.从图 1可以看出,当乙炔流量为60和80 mL/min 时所制 备的薄膜硬度值相差不大,当乙炔流量增加至100 mL/min,薄膜的硬度值明显地增大.这是因为在低 乙炔气体流量下所形成的非晶类金刚石相过少,不 足以完全包覆住 WC 纳米晶,无法形成连续网络结构,从而造成薄膜硬度低;随着乙炔气体流量增加, 薄膜中非晶类金刚石相增多,从而形成连续网络结构,抑制了 WC 晶粒生长速度及晶粒尺寸变大,而细小 WC 晶粒在连续网络结构中起到了弥散强化的作用,从而提升了薄膜硬度^[3].

2.2.2 离子源电流的影响

图 2 为不同离子源电流下薄膜的硬度曲线.从 图 2 可见,随着离子源电流的增大,薄膜硬度呈增大的趋势.

采用离子源技术制备掺钨类金刚石薄膜过程 中,乙炔的离化率决定着薄膜的硬度,而乙炔的离化 率取决于离子源的功率,功率越大乙炔离化率越高. 而电源功率等于电压与电流的乘积,离子源电流的 增加意味着离子源功率增加,从而提高乙炔气体的 离化率,增加等离子体中碳离子浓度与能量,在负偏 压的作用下更利于形成 sp³杂化 C—C 键,从而引起 薄膜硬度的增加.表3为不同离子源电流所对应的 离子源功率.由表3可知,随着离子源电流的增加, 离子源功率增加,乙炔气体的离化率随之提高.

表3 不同离子源电流下离子源功率

Table 3 The power of Ion Source under different current of Ion Source

离子源电流/A	离子源电压/V	离子源功率/kW
4	236	0. 944
6	251	1. 506
8	258	2.064

2.2.3 负偏压的影响

图 3 为负偏压对薄膜硬度的影响曲线. 从图 3 可见,负偏压在 50~200 V 范围内,薄膜硬度与基体 负偏压呈正相关关系. 这是由于在基体负偏压产生 的电场作用下,等离子体中氩离子、氢离子及碳离子 的能量随基体负偏压的增加而增加,从而加强了对 薄膜刻蚀作用,使得薄膜结构变得致密. 此外,碳离子能量的增加也会增强碳离子注入作用,从而引起 sp³杂化 C—C 键含量增加^[4]. 因此,随着基体负偏压 的增加,薄膜硬度增加.

2.2.4 钨靶电流对薄膜硬度的影响

图 4 为钨靶电流对薄膜的影响. 从图 4 可见, 随 钨靶电流的增加, 薄膜硬度减小. 在制备钨掺杂类金 刚石薄膜(W-DLC)时, W 易与碳键结合形成碳化钨 的纳米晶相, 其非均匀的分布在非晶碳网中, 这种碳 化钨纳米晶的形成会减少非晶碳网络中碳的配位原 子数及降低局部碳原子密度, 从而导致碳基网络中 sp²键含量的增加, 在一定程度上会降低薄膜的硬 度^[4].因而,随着钨靶电流的增加,薄膜中钨含量增加,促使 C 与 W 键合,诱使薄膜中 sp²杂化键含量增加,从而降低薄膜硬度.

综上所述,从提升薄膜硬度的角度考虑,工艺参数组合优选 A3B3C3D1,即乙炔流量 100 mL/min、离子源电流 8 A、负偏压 200 V、钨靶电流 4 A. 对比表 2 结果发现,此组工艺参数未落于设计的第 9 组试验方案上.由于负偏压过高会给薄膜带来过高的内应力,从而影响膜基结合力,因此试实验优选A3B3C2D1,即乙炔流量 100 mL/min、离子源电流 8 A、负偏压 100 V、钨靶电流 4 A,此方案作为后续试验的工艺基础.

3 结 论

采用离子源技术制备掺钨类金刚石薄膜(W-DLC),由正交试验分析得出,影响掺钨类金刚石薄 膜硬度的工艺参数重要性排序为:负偏压 > 乙炔气 体流量 > 离子源电流 > 钨靶电流.薄膜的硬度随负 偏压的增加而增加、随 C₂H₂流量的增大整体呈上升 趋势、随离子源电流的增大而增大、随钨靶电流的增 大而减小,最优的工艺参数组合为 A3B3C2D1,即乙 炔流量 100 mL/min、离子源电流 8 A、负偏压 100 V、 钨靶电流 4 A.

参考文献:

- [1] VEPREK S, REIPRICH S. A concept for the design of novel superhard coatings[J]. Thin Solid Films, 1995, 268(1-2): 64-71.
- [2] VEPREK S, VEPREKHEIJMAN M G J, KARVANKOVA P, et al. Different approaches to superhard coatings and nanocomposites [J]. Thin Solid Films, 2005, 476(1):1-29.
- [3] 张晨辉. TiN/SiN 纳米复合薄膜的性能和应用研究[D]. 北京:清华大学,2003.
- [4] 薛群基,王立平.类金刚石碳基薄膜材料[M].北京:科 学出版社,2012.

Orthogonal analysis of deposition parameters for W-DLC

ZHANG Cheng¹, LI Fuqiu¹, XIE Sizhong², LIN Kaisheng¹, ZHU Huichao¹, ZHANG Zhongcheng¹

1. Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, The Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510650, China; 2. China Airlines South Industry Co., Ltd., Zhuzhou 412000, China

Abstract: To explore the influence of deposition parameters on the hardness of W-doped diamond-like carbon films by ion source technology, orthogonal analysis method and the effect curve was used to notify the effect of deposition parameters including C_2H_2 flow rate, ion source current, substrate negative bias voltage and W target current on the hardness of W-doped diamond-like carbon films. The results indicates that the substrate negative bias voltage plays the key role on the hardness of films, which is followed by the C_2H_2 flow rate, ion source current and W target current finally. The relationships between the various parameters and the hardness of the deposited W-doped diamond-like carbon films were discussed. The optimal combination of process parameters is 100 mL/min acetylene flow, 8 A ion source current, 100 V negative bias and 4 A tungsten target current. This study provides an important theoretical basis for further optimizing the process to prepare high performance diamond-like films. **Key words**; orthogonal analysis; diamond-like; film; hardness