文章编号:1673-9981(2016)03-0214-06

电感耦合等离子体刻蚀 GaN 材料的工艺研究*

任 远,刘晓燕,刘久澄,刘宁炀,陈志涛

广东省半导体产业技术研究院,广东 广州 510650

摘 要:为进一步调节 GaN 材料刻蚀的关键特征尺寸、改善 GaN 材料刻蚀损伤,采用电感耦合等离子体(ICP)方法刻蚀 GaN 材料.通过分别改变 ICP 过程中的气体比例、腔室气压、ICP 功率及 RF 功率参数,对 ICP 刻蚀 GaN 材料的速率、GaN 与光刻胶选择比及直流偏压的变化做了系统地研究,得到了台面刻蚀的最优参数.使用光刻胶作为掩模刻蚀了 1.837 μ m 深度的 GaN 材料样品,表面的光刻胶平整光滑;刻蚀台阶整齐连续,刻蚀倾角控制在 75°以内.

关键词:电感耦合等离子体刻蚀;GaN;刻蚀速率;选择比;直流偏压

中国分类号: TN405.98

文献标识码:A

自上个世纪 90 年代以来,以 GaN 和 SiC 等为代表的第三代半导体材料得到迅速发展^[1]. GaN 材料有禁带宽度宽、直接带隙、热导率高、击穿电压高、电子迁移饱和速率高及化学稳定性好等特点,使得其在紫外、蓝、绿光激光器(Laser Diode)、发光二极管(Light Emitting Diode)、紫外探测器(Avalanche Photo Diode)及大功率电子器件(Electrical Devices)等应用方面显示了广泛的应用潜力和良好的市场前景^[2-3].

GaN 基 LED 器件的电极在同侧,因而需要刻蚀出台面,将 n-GaN 面暴露出来.由于 GaN 材料质地坚硬,性质十分稳定,在常温下不溶于水、酸和碱溶液^[4],因此最常用的刻蚀手段为等离子体干法刻蚀^[5].首先将半导体材料表面曝露于低压环境的等离子体中,利用等离子体与半导体材料发生物理或化学反应,从而去掉曝露的表面材料.与湿法腐蚀相比,干法刻蚀有各向异性好、选择比高、重复性好及特征尺寸可达纳米级的优点^[6].但是使用干法刻蚀

也存在一些问题,如较差的掩模材料选择比、等离子体带来的器件损伤及工作参数和影响因素繁多等^[7].近年来,新型的 GaN 光电器件如微纳 LED 阵列^[8]、单光子发光器件^[9]、高电子迁移率晶体管^[10]等研究获得了越来越多的关注,器件特征向小型化、密集化方向发展,因此对 GaN 材料刻蚀的关键特征尺寸、刻蚀损伤等问题有了更高要求,优化 GaN 材料的干法刻蚀工艺有了更重要的研究意义.

本文针对 GaN 外延材料的刻蚀工艺,详细研究了电感耦合等离子体刻蚀(ICP)的气体比例、腔室气压、ICP 功率和 RF 功率等主要工作参数对 GaN 材料刻蚀的影响.通过 ICP 设备监测了直流偏压的数值,使用台阶仪测试并计算了 GaN 材料刻蚀速率以及 GaN 与光刻胶选择比,同时分析了上述参数变化的趋势并对刻蚀的机理做了解释.研究结论对改善刻蚀质量,提高 GaN 器件性能,缩小器件特征尺寸意义重大.

收稿日期:2016-08-12

^{*}基金项目:广东省创新团队(2013C067);广东省科技计划项目(2016B070701023);广东省重大科技专项(2014B010119003, 2015B010112002);广东省应用型科技研发专项(2015B010129010, 2015B010134001, 2015B010132004);广东省科研基础条件建设专题(2016GDASPT-0313, 2016GDASPT-0219)

作者简介:任远(1989-),男,河北衡水人,工程师,硕士.

1 电感耦合等离子体刻蚀的原理

常见的干法刻蚀手段包括反应离子刻蚀(RIE)、电子回旋共振(ECR)刻蚀和电感耦合等离子体(ICP)刻蚀等. ICP 刻蚀是一种高密度低压刻蚀,通过用石英管或绝缘板与等离子体隔开的螺旋线圈产生等离子体,由于半导体晶圆是放置在远离线圈的地方,因而它不会受到电磁场的影响,通过在样品下方施加偏置电场来获得化学和物理刻蚀. 电感耦合等离子体刻蚀的腐蚀速率高且损伤较低,能够在高宽深比窗口中获得各向异性的侧壁结构.

电感耦合等离子体设备(ICP)是通过射频电源(ICP Power)激发的电感耦合模式产生等离子体的.当 ICP 电源打开后,高频电场给电子提供能量,使之撞击反应室内的气体原子和分子.当电子能量大于分子键能时,被撞分子变成自由基形态;若电子能量超过分子的电离能,则被撞分子离化同时发射二次电子和光子,产生更多的自由基和离子,形成雪崩效应,最终获得等离子体.

针对 GaN 的刻蚀过程所使用的反应气体通常为 Cl₂/BCl₃/N₂, ICP 刻蚀的化学反应主要包括两部分^[112], 一是工作气体在磁感线圈的耦合作用下被激发而分解为游离的离子, 第二个过程是活性离子与GaN 材料的反应. 其中化学刻蚀主要是 Cl 中性基团参与的, 而 N 离子则在电场作用下直接轰击材料表面进行物理刻蚀. 物理刻蚀能起到增强化学刻蚀的作用, 一方面可打断化学键引起晶格损伤, 另一方面促进附着物质、反应生成物脱离材料表面.

2 实验部分

2.1 试 样

实验所用的试样为在 c 面蓝宝石衬底上 MOCVD生长的 GaN 基 LED 外延片,其基本结构包括如下各层:低温 GaN 层,厚度 25 nm; u-GaN层,厚度 1 μ m; n-GaN层,厚度 2.3 μ m; InGaN层, 20 nm; 5 组量子阱(MQW)层,阱和垒的厚度分别为 InGaN/GaN=3/10 nm; p-GaN层,掺杂浓度为 5× 10^{17} cm⁻³,厚度 330 nm.将 GaN 外延片进行有机和无机清洗,然后切割成大小约 1 mm×1 mm 的样品,通过光刻及显影制作光刻胶掩模,光刻胶厚度约

3.3 μm,随后使用烘箱进行 30 min 的坚膜以使光刻 胶中的溶剂蒸发并固化光刻胶.

2.2 方法及设备

改变 ICP 系统的参数进行实验,在刻蚀过程中记录直流偏压(DC-bias)读数.使用台阶仪测量刻蚀后的样品表面台阶,使用有机溶剂去除残留的光刻胶后再次测量表面台阶,计算 GaN 材料的刻蚀速率及 GaN 与光刻胶的选择比.

使用的半导体材料刻蚀设备为聚昌科技股份有限公司制造的 Cirie-200 型双腔体电感耦合等离子体刻蚀系统,参照刻蚀程序设定为: ICP Power = 700 W; RF Power = 100 W; Pressure = 5 mTorr; $Cl_2/BCl_3/N_2$ Flow = 40/5/10 sccm; 刻蚀时间恒定为 400 s. 通过改变刻蚀过程中的单一参数,研究 ICP 刻蚀的参数对刻蚀速率、选择比及直流偏压 (DC-Bias)的影响. 其中 DC-Bias 电压是指在等离子体区域与衬底之间形成的直流自偏置电压,它反映了反应离子获得的加速能量[12].

3 实验与讨论

3.1 氯气比例对 ICP 刻蚀的影响

保持 ICP Power=700 W,RF Power=100 W,Pressure=5 mTorr 及刻蚀时间 400 s 不变,改变气体比例进行实验,研究刻蚀气体比例对刻蚀速率和刻蚀选择比的影响.实验设定总流量不变, Cl_2 与 BCl₃ 气体比例变化列于表 1. 通过实验及计算得到的刻蚀速率、GaN 与光刻胶选择比和直流偏压 DC-Bias 随 Cl_2 比例的变化的曲线见图 1.

表 1 Cl₂ 流量变化值 Table 1 Cl₂ gas flow rate

气体流量/sccm			Cl ₂ 比例/%
Cl ₂	BCl ₃	N ₂	C12 CL 1911/70
18	27	10	32. 73
22	23	10	40.00
27	18	10	49.09
31	14	10	56.36
36	9	10	65.45
40	5	10	72.73
42	3	10	76.36

从图 1 可见,随着氯气比例的增加,刻蚀速率逐渐上升,而选择比总趋势是下降的,直流偏压则变化幅度很小. 这是由于当 Cl₂ 比例增大时,化学刻蚀的主要反应物质 Cl 原子密度增大,推动反应向正向进行,刻蚀速率从 Cl₂ 比例为 32.7%时的 4.3 nm/s 升高到 Cl₂ 比例为 76.4%时的 6.5 nm/s.当 Cl₂ 比例增加时,物理刻蚀的比例减弱,化学刻蚀占主导,化学刻蚀对有机性质的光刻胶腐蚀影响更大,GaN与光刻胶的选择比逐渐减小,从 Cl₂ 比例为 32.7%时的 13.4 降到 Cl₂ 比例为 76.4%时的 3.1.直流偏压的变化幅度很小,这是因为直流偏压与等离子体的密度和能量相关,而在保持气体总量不变的条件下,仅仅改变气体比例不会影响等离子体密度与所获得的能量,所以直流偏压的变化很小.

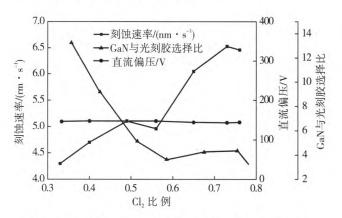


图 1 GaN 刻蚀速率、刻蚀选择比及直流偏压随 Cl₂ 比例 的变化

Fig. 1 Etch rates of GaN, etch selectivity over photoresist and DC bias as a function of % Cl₂ in Cl₂/BCl₃/N₂ gas chemistry

3.2 腔体压力对 ICP 刻蚀的影响

保持 ICP Power=700 W,RF Power=100 W, $Cl_2/BCl_3/N_2$ Flow =40/5/10 sccm,刻蚀时间 400 s 不变,改变腔室压力进行实验,研究腔室压力对刻蚀速率和刻蚀选择比的影响.实验设定腔室压力分别为 4,5,8,11,14,17,20 和 30 mTorr.

图 2 为刻蚀速率、GaN 与光刻胶材料选择比和直流偏压 DC-Bias 随气压的变化曲线. 从图 2 可见:随着气压的增加,刻蚀速率在 11 mTorr 时达到最大值 7.37 nm/s,然后逐渐下降,在腔体气压为 30 mTorr 时变为 4.28 nm/s;GaN 与光刻胶的选择比从 4 mTorr 时的 2.37 降低为 30 mTorr 时的 1.18,总体呈下降趋势;DC-bias 直流偏压持续增大,从 4

mTorr 时的 132.5 V 增大到 30mTorr 时的 350.5 V.

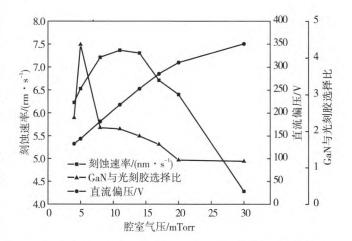


图 2 GaN 刻蚀速率、刻蚀选择比及直流偏压随腔室气压 的变化

Fig. 2 Etch rates of GaN, etch selectivity over photoresist and DC bias as a function of operating pressure

在等离子体刻蚀过程中,当气压升高时刻蚀速率首先增大随后会减小.这是因为随着压强增大,腔体中注入的气体分子数量增大,电离形成的等离子的体密度也随之增大,更多的粒子参与到与材料反应中,使刻蚀速率增加.但是随着压强继续增大,等离子体的产生过程趋于饱和,参与刻蚀过程的粒子密度增大也会使碰撞复合过程增强,单个等离子体的能量减少,这两个原因使得到蚀速率降低.选择比整体变化是呈下降趋势,这是因为等离子体密度增大,对光刻胶的轰击更剧烈,光刻胶的刻蚀速率迅速增加.当 ICP 刻蚀的腔体压力增大时,由于 RF Power 固定为 100 W,单个等离子体获得的能量减少,同时高密度的粒子发生散射也会使得直流偏压不断增大.

3.3 ICP 功率对 ICP 刻蚀的影响

保持 RF Power=100 W, Pressure=5 mTorr, $Cl_2/BCl_3/N_2$ Flow =40/5/10 sccm, 刻蚀时间 400 s 不变, 改变 ICP 功率进行实验, 研究 ICP 功率对刻蚀速率和刻蚀选择比的影响. 实验设定 ICP 功率分别为 100, 200, 300, 400, 500, 600 和 700 W 进行实验.

图 3 为刻蚀速率、GaN 与光刻胶选择比和直流 偏压 DC-Bias 随 ICP 功率的变化曲线. 从图 3 可见: 随着上电极功率的增加,刻蚀速率从 100 W 时的 1. 32 nm/s 升高到 600 W 时的 6. 54 nm/s,随后有所下降,在 800 W 时减少为 6. 03 nm/s; GaN 与光刻胶的选择比变化规律不是很明显,开始呈上升趋势,而在 500 W 之后的条件下有起伏; DC-bias 直流偏压是持续减小的,从 100 W 时的 394 V 减小到 800 W 时的 125.5 V.

ICP 功率对等离子体的密度有很大影响,气体的电离程度会随之增大而加强,从而使得参与化学刻蚀的粒子数目增多,刻蚀速率增大;而当 ICP 功率增大到一定程度时, Cl_2/BCl_3 电离饱和,等离子体的热运动开始起主导作用,粒子之间的碰撞复合使得到达材料表面的有效反应离子能量降低,方向性变差,刻蚀速率也随之下降.

关于直流偏压 DC-bias 的变化,文献^[13]报道指出,随着 ICP 功率的增大,等离子体产生的方式会由 E模式(电容耦合模式)转变为 H模式(电感耦合模式),相对应的偏压会先升高而后降低.在本实验测量的数据中,直流偏压一直呈下降状态,认为由于腔体工作气压恒定为一个较小的数值 5 mTorr,电容耦合模式提早结束,离子束的密度是随 ICP 功率提高而正向增大的,因此直流偏压也在整体上表现为下降趋势.

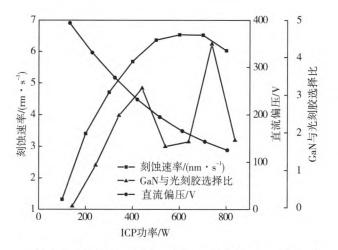


图 3 GaN 刻蚀速率、刻蚀选择比及直流偏压随 ICP 功率的 变化

Fig. 3 Etch rates of GaN, etch selectivity over photoresist and DC bias as a function of ICP Power

3.4 RF 功率对 ICP 刻蚀的影响

保持 ICP Power=700 W,Pressure=5 mTorr, Cl₂/BCl₃/N₂ Flow =40/5/10 sccm,刻蚀时间 400 s 不变,改变 RF 功率进行实验,研究 RF 功率对刻蚀 速率和刻蚀选择比的影响. 实验设定 RF 功率分别 为 20,50,80,100,110,140 和 170 W.

图 4 为刻蚀速率、GaN 与光刻胶选择比和直流偏压 DC-Bias 随 RF Power 的变化曲线. 从图 4 可见:随着 RF 功率的增加,刻蚀速率从 20 W 时的 0.74 nm/s 升高到 200 W 时的 10.14 nm/s;GaN 与光刻胶的选择比变化规律是开始呈上升趋势,由 20 W 时的 0.70 上升到 110 W 时的 6.32,随后逐渐下降,在 200 W 时降为 2.31; DC-bias 直流偏压是持续增大的,从 20 W 时的 23 V 升高到 200 W 时的 262 V.

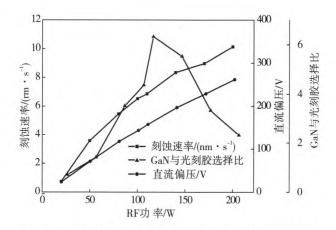


图 4 GaN 刻蚀速率,刻蚀选择比和直流偏压随 RF 功率的变化

Fig. 4 Etch rates of GaN, etch selectivity over photoresist and DC bias as a function of RF Power

等离子体获得的能量与 RF 功率密切相关,离子在电场的加速下,获得的速率越快,同时方向性也越好,对材料表面的轰击也得到增强.离子轰击不仅会打断共价键,腐蚀 GaN 材料,同时也带走了材料表面的刻蚀生成物和聚合物等. RF 功率对物理刻蚀的影响很大,因而也会增加对材料的损伤,高能量的等离子体撞击材料进而破坏晶格排列,会使器件的反向漏电特性劣化,刻蚀后进行高温退火能够部分修复离子轰击引入的损伤[14],因此选择合适的RF 功率至关重要.直流偏压逐渐增大是离子获得更多能量的一个表征,它随 RF 功率增大而同向增大.

光刻胶与 GaN 材料的选择比在本实验中的数值并不准确,因为经过 400 s 长时间刻蚀后,大部分掩膜已经被破坏,仅提供参考意义.

通过对 ICP 刻蚀工作参数的研究,选取了合适的

刻蚀速率、较高的选择比及较低的直流偏压,即 ICP Power = 700 W, RF Power = 80 W, Pressure = 11 mTorr, $\text{Cl}_2/\text{BCl}_3/\text{N}_2$ Flow = 40/5/10 sccm. 使用光刻胶作为掩模刻蚀了 $1.837 \mu \text{m}$ 深度的 GaN 材料,使用 FEI Quanta 650 扫描电镜观测了样品截面形貌(图 5). 从图 5 可见:样品表面的光刻胶平整光滑,表明其对掩膜下方的 GaN 材料仍具有良好的保护性能;刻蚀台阶整齐连续,刻蚀倾角控制在 75° 以内,这对后续 LED 器件的电学性能及出光效率都有改善作用.

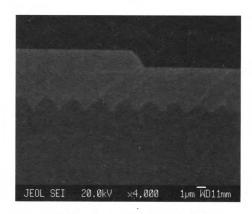


图 5 刻蚀后的 GaN 样品的 SEM 截面图 Fig. 5 SEM cross-sectional micrograph of etched GaN sample

4 结 论

本文采用 Cl₂,BCl₃,N₂ 作为反应气体,利用电感耦合等离子体刻蚀(ICP)技术对 GaN 刻蚀工艺中的刻蚀速率、GaN 与光刻胶选择比以及直流偏压做了研究.结果表明:GaN 材料的刻蚀速率主要受 ICP 功率与 RF 功率的影响,其中随着 ICP 功率增大刻蚀速率会逐渐饱和;氯气比例的增加对 GaN 与光刻胶的选择比影响最大;直流偏压会随着 ICP 功率提高而降低,随着腔室气压或 RF 功率增大而升高.研究结果对调节 GaN 材料刻蚀速率和刻蚀、提高 GaN 器件性能,以及缩小器件尺寸有重要意义.

参考文献:

[1] SCHUBERT E F. Light-Emitting Diodes[M]. Cambridge: Cambridge university press, 2006.

- [2] NAKAMURA S, MUKAI T, SENOH M, et al. Thermal annealing effects on p-type Mg-doped GaN films[J]. Jpn J Appl Phys, 1992, 31(2B): L139-L142.
- [3] AMANO H, KITO M, HIRAMATSU K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J]. Jpn J Appl Phys, 1989,28(12):L2112-L2114.
- [4] REN F, HAN J, HICKMAN R, et al. GaN/AlGaN HBT fabrication [J]. Solid-State Electronics, 2000, 44 (2): 239-244.
- [5] 韩郑生. 半导体制造技术[M]. 北京:电子工业出版 社,2004.
- [6] 顾长志. 微纳加工及在纳米材料与器件研究中的应用 [M]. 北京:科学出版社,2013.
- [7] 夸克 M, QUIRK M, SERDA J, 等. 半导体制造技术 [M]. 北京:电子工业出版社,2004.
- [8] GONG Z,LIU N Y,TAO Y B,et al. Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes [J]. Semiconductor Science and Technology, 2012, 27 (1): 15003-15009.
- [9] CHEN W, HU G, JIANG J, et al. Electrically driven single pyramid InGaN/GaN micro light-emitting diode grown on silicon substrate [J]. Journal of Display Technology, 2015, 11(3):285-291.
- [10] LIU C, CAI Y, ZOU X, et al. Low-Leakage high-breakdown laterally integrated HEMT-LED via n-GaN Electrode [J]. IEEE Photonics Technology Letters, 2016,28(10):1130-1133.
- [11] 宋颖娉,郭霞,艾伟伟,等. Cl₂/BCl₃ ICP 刻蚀 GaN 基 LED 的规律研究[J]. 微纳电子技术,2006,43(3): 125-129.
- [12] ZHOU S, CAO B, LIU S. Optimized ICP etching process for fabrication of oblique GaN sidewall and its application in LED[J]. Applied Physics A, 2011, 105 (2):369-377.
- [13] KEMPKES P, SINGH S V, PARGMANN C, et al. Temporal behaviour of the E to H mode transition in an inductively coupled argon discharge [J]. Plasma Sources Science and Technology, 2006, 15(3):378.
- [14] HAHN Y B, CHOI R J, HONG J H, et al. High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light-emitting diodes [J]. Journal of Applied Physics, 2002, 92(3):1189-1194.

(下转第232页)

Determination of cobalt in cobalt chromium ceramic alloy by iodometry

MAI Libi, XU Jieyu, CHEN Xiaolan, CHEN Xiaodong

Guangdong Industrial Analysis and Testing Center, Guangzhou 510651, China

Abstract: Iodometry is used to determine cobalt in cobalt chromium ceramic alloy. The relative standard deviation is 0.11% (n=11). The good precision of this method can meet the requirements of nickel-iron ceramic alloy in the determination of total cobalt.

Key words: cobalt chromium ceramic alloy; cobalt; teflon; autoclave; iodometry

aradaradada dadadada dadada dadada dadada dadada dadada dada dada

(上接第218页)

Study of inductively coupled plasma etching of GaN

REN Yuan, LIU Xiaoyan, LIU Jiucheng, LIU Ningyang, CHEN Zhitao Guangdong Research Institute of semiconductor Industrial Technology, Guangzhou 510650, China

Abstract: In order to further regulate the key feature size of GaN material etching, reduce the GaN material etching damage, inductively coupled plasma (ICP) etching of GaN is systemically investigated by changing $Cl_2/BCl_3/N_2$ gas mixing ratio, operating pressure ICP power and RF power. The etching rate, etch selectivity of GaN over Photoresist and DC-bias is studied systematically and the mechanism of changes is analyzed. The optimized etching process, used for mesa formation during the LED fabrication, is presented. A depth of 1.837 microns of GaN was etched using photoresist as the mask. The surface of the photoresist is smooth. Etching step is sharp with an angle less than 75°.

Key words: ICP etching; GaN; etching rate; selectivity; DC-Bias