文章编号:1673-9981(2008)03-0200-03

铝合金型材时效炉能耗的比较

何家金1,刘辉丽1,麦振海1,卢继延1,周玉焕1,谢炳豪2

(1.广东坚美铝型材厂有限公司,广东 佛山 528231; 2.佛山市能源利用监测中心,广东 佛山 528000)

摘 要:以一次进出料 4 h 为一个计算周期,对 A 和 B 两种不同规格的时效炉进行能耗试验比较. 试验结果表明:B 时效炉的散热量比 A 时效炉的大 155.48 MJ.B 时效炉烟气所带走的热损失比 A 时效炉低937.29 MJ,B 时效炉的热效率是 A 时效炉的三倍,B 时效炉的单位产品煤耗为 A 时效炉的三分之一. 关键词:铝型材时效炉;热效率;能耗

中图分类号:TG232

文献标识码: A

工业与经济的发展导致全球能源资源的不断减少,节约油、煤、燃气等能源的重要性及环保问题日益被人们重视,洁净燃烧与保护环境已成为生产企业的一项十分重要的工作.在铝合金型材生产过程中,电力、燃料等能源是不可缺的物质,虽然能耗在铝型材生产总成本中不是最大的一项,但是在全球人类十分重视节省能源资源的今天,同样应引起我们的高度重视[1-2].

本文主要针对铝合金型材生产企业中常用的 9930 mm×2210 mm×3260 mm 时效炉与 14500 mm×3300 mm×3500 mm 时效炉^[1] 的能耗进行了测试试验,分别对处理铝材产品的能源单耗、热耗、热能利用率、进出炉的热量分布及存在的热能损失进行了研究,为铝合金型材生产用时效炉设备的节能降耗提供了参考依据.

1 试 验

1.1 设备与仪器

设备:9930 mm×2210 mm×3260 mm 时效炉(A 炉),14500 mm×3300 mm×3500 mm 时效炉(B炉).

仪器:标准毕托管、燃烧效率测试仪、U型压力计、电平衡测试仪及红外测温仪等.

1.2 方 法

以一次进出料 4 h 为一个周期进行对比试验,A

收稿日期:2007-12-17

作者简介:何家金(1956--),男,江西赣州人,教授级高级工程师.

炉与 B 炉除投入加热的产品数量不同外,其它外界条件,计算方法及使用的加热燃料等均相同.

测试时需要记录的数据如下:铝材进炉温度、铝材进炉量、铝材进炉的物理显热、料框进炉温度、料框进炉量、车架进炉量;铝材出炉温度、铝材出炉的物理显热,车架出炉温度、料框出炉的物理显热,车架出炉温度、车架出炉的物理显热;燃料入炉温度、燃料消耗量、燃料入炉的物理显热、燃料燃烧的发热量.

2 试验结果与讨论

2.1 炉体表面的散热损失与一次性处理量的分析

根据综合传热系数 $\alpha^{[3]}$,在 A 炉和 B 炉炉体表面温度测试结果的基础上,分别算出 A 炉和 B 炉烙 个表面的散热损失 $Q_{tt}^{[3]}$,A 炉和 B 炉炉体表面温度及散热损失计算结果列于表 1.

由表1可知,在一个计算周期内B时效炉比A时效炉的散热量大155.48 MJ.这是由于A炉的总容积较B炉小2/3,而炉体的散热损失与炉体表面积大小直接相关,通常炉体表面积越大在相同时间内的散热量就越大.

时效炉一次性处理物料量的大小,对节能效果 具有显著的影响.如果一次性处理量大,当产品量相同时,时效炉开炉进、出料的次数就会减少,这样降低了时效炉因开放、关停炉而导致的蓄热损失. A 时

表	1	炉	体	表	面	散	热	扱	失	结	果	
---	---	---	---	---	---	---	---	---	---	---	---	--

Table 1 Heat loss of the furnaces

	表面平均温度 ಒ/℃		综合传热系数。	散热面积 F/m²		散热量 Qt /MJ		
_	B炉	A 炉	B炉	A 炉	B炉	A炉	B炉	A 炉
炉顶	52. 10	42	47.88	44.53	47.9	22.0	312. 52	94.04
前侧	37.40	37	37.51	37.37	11.6	7.2	33.64	20.44
后侧	44.00	43	39.60	39. 30	11.6	7.2	47.56	28. 28
左側	32.80	35	35.83	36.66	50.8	32.4	107.76	80.76
右侧	30.50	56	34.87	42.84	50.8	32.4	88.56	211.0
合计	_	_	_		_		590.04	434.52

效炉满载处理量为 2284.63 kg,料框和车架的质量为 2134.0 kg;B 时效炉满载处理量为 7561.24 kg,料框和车架的质量为 6806.6 kg.通过对 A 和 B 时效炉的一次性处理量比较可知,B 炉的处理量是 A 炉的三倍左右.当 A 和 B 时效炉均处理相同量的铝型材产品时,A 炉需开放、关停三次炉进行进、出料,而 B 炉仅为一次,由此减少了开炉造成的炉子的蓄热损失.显而易见,一次性人炉处理量越大,炉子的热能利用率越高,相对单位产品的能耗越低.

2.2 烟气带走热量的损失分析

时效炉排出的烟气会带走大量的热,造成热量

损失,这是导致时效炉热效率低的主要原因之一.由于 B 时效炉容积较 A 时效炉大,其燃烧、加热系统进行了适当的改进而与 A 时效炉有所不同. B 时效炉增加了热烟气回炉设施^[4-5],把烟气送回到加热室,燃烧机的火力只作为补充热量用,这样缩短了升温时间,减少了恒温使用时的排烟热损失. A 炉和 B 炉的烟气热损失^[3]计算结果列于表 2.

由表 2 可知,B 时效炉烟气所带走的热损失量比 A 时效炉低 937.29 MJ,相当于每吨产品节能 32 kg 标准煤.

表 2 A 炉和 B 炉的风烟热损失结果

Table 2 The heat loss with smoke of furnace A and B

	理论空气量 V _k /(Nm³·kg ⁻¹)	理论烟气量 V _y /(Nm³・kg ⁻¹)	过剩空气 系数 α	实际烟 气量/Nm³	烟气平均 温度/C	烟气比热 /(kJ・Nm ⁻³ ・で ⁻¹)	烟气排出 热量/MJ
A时效炉	10.48	10.99	4,55	3500.70	270.0	1. 32	1169.86
B时效炉	10.48	10.99	1.53	1216.11	163.4	1. 31	232. 57

2.3 热平衡、热效率与能源单耗比较分析

加热炉节能的两个重要参数为热效率和产品的能源单耗量.图 1 为时效炉的热平衡体系图^[3],时效炉热平衡测试与计算^[6]结果列于表 3.

通过图 1 的热平衡体系关系和表 3 的数据,计算 A 和 B 时效炉的热效率和能源单耗量^[7-8]. A 和 B 时效炉的热能比较结果列于表 4.

由表 4 可知, B 时效炉的热效率是 A 时效炉的 三倍, 同时 B 时效炉产品标煤单耗只是 A 时效炉的 三分之一. A 时效炉处理单位产品热量消耗大, 一是该炉的一次性处理的产品量小, 在处理时间固定的条件下, 燃料所产生的热量有很大部分通过排烟损失掉了; 二是由于该种时效炉的炉内的燃烧室热交换器太小, 致使排烟温度高达 270°C, 排烟损失的热量占了总供人热量的 38.30%; 三是实际烟气排

出量过大,达 3500.70 Nm³,致使排烟热损失很大.另外,A炉的总体容积较 B炉小 2/3,其热效率为12.59%,此炉的热能有效利用率低,导致相对单位

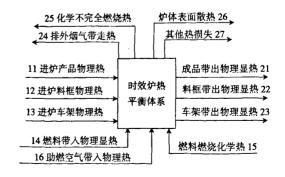


图 1 时效炉的热平衡体系图

Fig. 1 Heat balance diagram of aging furnace

产品的能耗高;该炉进出料时需空置放炉时间达 2 h 左右,空炉的炉子温度已冷却至 120℃,致使进料后 升温时有部分热量被作用于炉体的蓄热热量,造成 热能有效利用率低.

表 3 时效炉热平衡结果

Table 3 Results of the measurement and calculation of heat balance

项目	热量	/MJ	75.5	热量/MJ		
	A时效炉	B时效炉	项目	A 时效炉	B时效炉	
11	8. 18	35, 87	21	384.41	1258. 72	
12	5.06	8. 46	22	114.58	357.72	
13	3, 32	10.60	23	75.19	234.47	
14	1. 62	1. 92	24	1169.86	232.57	
			25	4.42	0.37	
15	3036.04	3067.39	26	434.55	590.03	
16	0.00	0.00	27	871.21	450.35	
总供热量	3054.22	3124. 23	总出热量	3054.22	3124. 32	

表 4 A和B时效炉的热能比较结果

Table 4 Comparison of the heat energy of furnace A and B

	炉体表面 平均温度/℃	排烟 平均温度/℃	产品出炉 温度/℃	产品热耗 /(kJ・kg~1)	产品煤耗 /(kg・t ⁻¹)	热效率/%
B时效炉	39, 36	163. 40	204.00	405, 67	13.84	40.29
A时效炉	42.60	270.00	206.00	1328.90	45.34	12.59
变化率/%	-7.61	-39.48	-0.97	-69.47	<u>-69.48</u>	220.02

3 结 论

B时效炉的散热量和烟气所带走的热损失分别比 A 时效炉大 155. 48 MJ 和低 937. 29 MJ,B 时效炉热效率和单位产品能耗分别是 A 时效炉的三倍和三分之一.B 时效炉较 A 时效炉具有显著的节能与减排作用,B 种时效炉在生产实践中显著改变了A 种时效炉热效率低和浪费能源的缺陷.

参考文献:

- [1] 吴锡坤. 铝型材加工实用技术手册[M]. 长沙:中南大学出版社,2006:594-596.
- [2] 王柷堂,田荣璋,铝合金及其加工手册[M],长沙:中南 大学出版社,2005.

- [3]国家标准总局标准化综合研究所, GB2587-81 热设备能量平衡通则[S], 北京:中国标准出版社,1981.
- [4] 王國强. 全自动控制时效炉的设计与应用[J]. 铸造技术.1999(1),24-25.
- [5] 刘狄明,提高时效炉炉内温度均匀性的探索[J].中国计量,2002(4):44.
- [6] 王志超,李周群. GB/T13338-91 工业燃料炉热平衡测定 与计算方法基本规则[S]. 北京:中华人民共和国机械电 子工业部,1992.
- [7] 中国标准化信息分类编码研究所,国家计委能源所. GB3484-83企业能量平衡通则[S].北京:中国标准出版 社,1994.
- [8] 李爱仙,辛定国,张管生、GB/T2588-2000 设备热效率计 算通则[S]、北京:中国标准出版社,1994.

The comparison of energy consumption of aluminum profile aging furnace

HE Jia-jin¹, LIU Hui-li¹, MAI Zhen-hai¹, LU Ji-yan¹, ZHOU Yu-huan¹, XIE Bing-hao²
(1. Guangdong Jian Mei Aluminum Profile Factory Co., Ltd., Foshan 528231, China;
2. Energy Using Monitoring Center of Foshan City, Foshan 528000, China)

Abstract: Two aging furnaces (A and B) with different specifications were used to carry out the energy consumption measurement. The feeding/unloading cycle was 4h. The test results showed that the heat dissipating capacity of furnace B was 155. 48 MJ more than that of furnace A. The heat loss with smoke of furnace B was 937. 29 MJ less than that of furnace A. It is concluded that the thermal efficiency of furnace B is three times higher than that of furnace A, i. e., the coal consumption of B is one third of A.

Key words: aluminum aging furnace; thermal efficiency; energy consumption