文章编号: 1003-7837(2006)01-0041-05

铜基块体非晶合金的研究进展*

张永章,谢致薇,杨元政,胡美贤

(广东工业大学材料与能源学院,广东 广州 510006)

摘 要:简要介绍了制备铜基块体非晶合金的各种方法,综述了铜基块体非晶合金的力学性能、耐腐蚀 性能、热稳定性,分析了晶化过程的热力学行为,并对铜基块体非晶合金的发展进行了概述.

关键词:铜基非晶;制备方法;力学性能;热稳定性

中图分类号: TG139.8 文献标识码: A

20 世纪 90 年代末,人们在制备大块非晶合金方 面的研究取得了突破性进展.其中,以日本东北大学 A. Inoue 研究小组和美国加州理工大学 W. L. Johnson 研究小组为代表,开发出了具有实用的工程应用 背景的铜基块体非晶合金.铜基块体非晶合金具有许 多优异的性能,如强度高、硬度高、耐蚀性强等,在工 业、体育器材、军工、宇航、电子(如集成电路引线框架 等)等领域中具有广阔的应用前景.本文对铜基块体 非晶合金的制备方法和性能进行了综述.

1 铜基非晶合金的制备方法

目前,铜基非晶合金主要有 Cu-Zr-Ti, Cu-Hf-Ti, Cu-Zr-Ti-Y, Cu-Zr-Hf-Ti, Cu-Zr-Ti-Be, Cu-Zr-Ti-(Nb,Ta)和 Cu-Zr-Al 等几个基本合金系. 铜 基非晶形成能力较强,较易得到块体非晶.目前,已 研究出多种制备铜基块体非晶的方法,根据材料原 始状态的不同,可粗略地将这些方法分为从液相制 备非晶态固体和从晶态固体制备非晶态固体两大 类. 每种方法都有其独特之处及适用范围,下面给予 简单的介绍.

1.1 水淬法[1]

水淬法是将合金置于石英管中,熔化后连同石 英管一起淬入流动水中,以实现快速冷却,形成大块 非晶合金.实现这个过程有两种途径:一种是将石英 管置于封闭的保护气氛系统中进行加热(石英管口 敞开),同时水淬过程也是在封闭的保护气氛系统中 进行;另一种是将石英管直接在空气中加热(石英管 口须封闭),管内须充入保护气体,待合金熔化后再 将石英管淬入流动水中.这种方法可以达到较高的 冷却速率,有利于大块非晶合金的形成,但也存在许 多问题.例如加热和水淬过程都在封闭系统中进行, 其设备将是比较复杂和昂贵的;而将合金密封在石 英管中时,则因不利于排气,容易造成气孔.另外,在 某些场合下石英管与合金可能发生反应使石英管破 裂,而反应后的生成物既影响水淬时液态合金的冷 却速率,又容易造成非均匀形核,以至影响大块非晶 合金的形成.因此这种方法的应用具有很大的局限 性.

1.2 电弧熔炼铜模吸铸法[1]

在惰性气体保护下用电弧迅速将合金加热至液态,然后利用负压将熔融合金直接吸入循环水冷却的 铜模中,利用水冷铜模导热快实现快速冷却,以获得 大块非晶合金.该法是在气氛压力与大气压接近的保 护气氛体系中熔炼合金,所以没有明显的气孔;由液 态转入冷却模的时间较短,能达到较高的冷却速率, 工艺过程比较简单,也易于操作.由于铜模的冷却速

收稿日期: 2005-11-12

^{*}基金项目:广东省自然科学基金资助项目(4009459) 作者简介:张永章(1981-),男,福建漳州人,硕士研究生.

率有限,所以制备大块非晶合金的尺寸有限.

1.3 感应加热铜模浇铸法[1]

该法是将合金置于底端开孔的石英管中,通过 电感线圈在合金中产生的涡流加热使得合金迅速熔 化.由于表面张力使液态合金不会自动滴漏,故需要 从石英管顶部外加一个正气压将其吹人铜模.与电 弧加热吸铸法相比,感应加热浇铸法具有加热温度 可控性强,铜模不被直接加热等优点,但是在浇铸时 容易混人保护气体,形成气孔.

1.4 射流成型法[2]

射流成型法是将母合金置于底部有小孔的石英 管中,将母合金熔化后,在石英管上方导人氢气,液 态母合金在压力的作用下从小孔中喷出,注入下方 的水冷铜模型腔内,使其快速冷却而得到非晶合金. 这种方法具有较高的冷却速率,非晶形成能力较强. 但是该方法较复杂,技术难度较大,而且有可能得到 非晶粉末.

1.5 压力模型铸造法[1]

首先将合金在熔化腔中熔化,然后将熔化的合 金以一定速度和压力压入金属模型腔中,以实现快 速冷却而形成大块非晶合金.由于液态金属对金属 模型腔的充填速度很快,并保持较大的压力,与金属 模铸造相比,这种方法具有更快的冷却速率,更有利 于形成大块非晶合金.用这种方法还可以直接制作 形状较复杂的大块非晶合金零件.

1.6 定向凝固法[1,3]

定向凝固法可以连续获得大块非晶合金,它有两 个主要的控制参数,即定向凝固速率 V 和固液界面前 沿液相温度梯度 G,定向凝固法的冷却速率可以通过 这两个参数计算出来,即 $R_e = GV$.可见,温度梯度 G 越大,定向凝固速率 V 越快,冷却速率则越大,所制备 的非晶合金的截面尺寸也越大.然而温度梯度 G 的大 小主要受定向凝固设备限制,一般在 10~100℃/mm 范围.定向凝固速率 V 受设备的熔化速率限制.例如 定向凝固必须保证在样品相对下移过程中熔化区固 相能够完全熔化,并达到一定的过热度,因此定向凝 固速率也不可能无限大.另外,当 V 很大以后,G 将降 低,样品截面尺寸增大也会影响 G 的大小.综合几方 面的因素,当样品直径在 20 mm 以下时,取 G= 100℃/mm,V=1 mm/s,则冷却速率 $R_e = 100℃/s$.可 见,定向凝固方法虽然可以连续制备大块非晶合金, 但要求合金的非晶形成能力强,临界冷却速率低,非 晶合金样品的截面尺寸也不可能太大.

以上六种方法均属于从液态到固态快速冷却以 制得块体非晶合金的方法,表1中列出了这六种方 法的特点.

1.7 机械合金化法[4]

机械合金化法是将元素粉末按比例混合,在高 纯氩气的保护下在球磨机中进行机械合金化制备非 晶态合金.利用磨球的冲击力等通过粉末元素之间 的固相扩散进行合金化,能获得用传统熔炼法所不 能获得的合金材料.但该法耗时长及存在容器和磨 球污染粉末的问题,并且此法依附于装置的因素较 多,产品的再现几率低.另外,机械合金化合成的材 料均为粉末状,需进一步固化成形.

1.8 固结成型法[1]

固结成型法是将元素粉末在过冷温度区间进行 超塑性变形而固结成型.粘滞性牛顿流体所导致的 超塑性变形行为具有普通的晶体材料超塑性变形所 无法比拟的优点.这种制备方法在一定程度上可以 突破直接凝固法制备大块非晶合金在成分上和尺寸 上受到的限制,因而可以在更多的合金体系中制备 尺寸更大的非晶合金.

采用不同的制备方法,铜基非晶合金的冷却速 率各异.一般说来,在冷却条件一定时,所制备的样 品体积越大,其凝固的冷却速率越小,样品的体积与 其凝固的冷却速率两者很难兼得.

2 铜基块体非晶合金的性能

2.1 铜基块体非晶合金的力学性能

铜基块体非晶合金的抗压断裂强度超过 2000 MPa,且具有明显的塑性变形能力,这么高的抗压断 裂强度是非晶形成能力最好的锆基非晶合金所无法 比拟的. Akihisa Inoue 等人^[5-6]的研究表明,Cu-Zr-Hf-Ti 系非晶合金具有相当好的延展性,较高的抗 压强度和屈服强度. 以块体非晶合金 Cu₆₀ Zr₃₀ Ti₁₀, Cu₆₀ Hf₂₅ Ti₁₅,Cu₆₀ Zr₂₀ Hf₁₀ Ti₁₀ 和 Cu₆₀ Zr₃₀ Ti₁₀, Cu₆₀ Hf₂₅ Ti₁₅,Cu₆₀ Zr₂₀ Hf₁₀ Ti₁₀ 和 Cu₆₀ Zr₁₀ Hf₁₅ Ti₁₅ 为例,它们的弹性伸长率可达到 1.7%,而塑性伸长 率约为 1.6%. 三元合金 Cu₆₀ Zr₃₀ Ti₁₀ 和 Cu₆₀ Hf₂₅ Ti₁₅在压缩变形中,它们各自的杨氏模量、屈服强 度、抗压强度分别为 124 GPa,1940 MPa,2110 MPa 和 134 GPa,2040 MPa,2190 MPa;而四元合金 Cu₆₀ Zr₂₀ Hf₁₀ Ti₁₀ 和 Cu₆₀ Zr₁₀ Hf₁₅ Ti₁₅ Sh 列为 122 GPa,2010 MPa,2050 MPa 和 127 GPa,2030 MPa, 2140 MPa. 断裂发生在最大剪切面位置,与外加载 荷方向大约成 54°角,断裂面具有质地良好的纹理, 与典型的块体非晶合金类似,具有良好的延展性.在 拉伸变形中,与压缩变形类似,其抗拉强度也超过 2000 MPa. 上述四种非晶合金各自的屈服强度、抗 拉强度和断裂伸长率分别为:1780 MPa,2000 MPa, 1.9%;1920 MPa,2130 MPa,2.0%;1780 MPa, 1990 MPa,2.0%;1910 MPa,2030 MPa,2.0%.这 四种合金屈服后其塑性变形约为0.3%.此外,试验 证实拉伸断裂也是发生在最大剪切面,与拉伸载荷 方向大约成45°角.在单轴拉伸模式下的变形和断裂 形式表明铜基块体非晶合金具有相当好的延展性.

表 1 液-固快冷制备块体非晶合金的六种方法之比较

Table 1 The comparison of six preparation methods for bulk amorphous alloys by quick cooling from liquid to solid

制备方法	熔炼工艺	铸件质量	冷却方法	冷却速率	设备组成	特点
水淬	封闭系统	石英管法 可能有气孔	流动水	较高,与试样体积 (比表面)有关	加热设备,流动冷 却水(淬火装置)	尺寸有限,设备复 杂
电弧熔炼 铜模吸铸	封闭系统	无明显气孔	水冷铜模	较高,与试样体积 (比表面)有关	电弧熔炼炉,水冷 铜模	尺寸有限
感应加热 铜模浇铸	石英管 密封系统	易形成气孔	水冷铜模	较高,与试样体积 (比表面)有关	电感线圈涡流熔 炼•水冷铜模	尺寸有限
射流成型	石英管 密封系统	无明显气孔	水冷铜模	较高	加热设备,压力喷 射,水冷铜模	尺寸有限,有可能 得到粉末
压力模 型铸造	封闭系统	无气孔	金属模型腔	较高	加热设备,冷却装 置	尺寸较大,可制作 形状复杂零件
定向凝固	封闭系统	无气孔	定向凝固	较低,受定向凝固速 率和温度梯度影响	加热设备,定向凝 固装置	尺寸有限

所有的块体非晶合金都有一个明显的特点,即 E 随着 $\sigma_{i,f}$ 的增加而增加,块体非晶合金的这种成线 性关系的曲线与传统晶态合金有很大不同,块体非 晶合金具有更低的杨氏模量、更大的弹性伸长率和 更高的抗拉强度.此外,块体非晶合金的 T_g 和 T_I 反 映了组成元素之间的结合程度.由于Cu-Zr-Hf-Ti 系块体非晶合金比Zr-Al-Ni-Cu系非晶合金具有更 高的 T_g 和 T_I ,因此,Cu-Zr-Hf-Ti 系的Cu-M(M= Zr,Hf,Ti)原子对结合能力强于Zr-Al-Ni-Cu系的 Zr-M(M=Al,Ni,Cu)原子结合能力.总之,铜基块 体非晶合金很有希望发展成优于锆基的且具有优良 力学性能的新型材料.

2.2 铜基非晶合金的耐腐蚀性能

铜基非晶合金的抗腐蚀能力随组元种类的不同 而差异巨大,即使组元相同,也会随组元成分比例的 变化而变化. Chunling Qin 等^[7]研究了块体非晶合 金 (Cu_{0.6} Zr_{0.3} Ti_{0.1})_{100-x} Nb_x ($x = 0 \sim 5$)在 298 K, 1 mol/L HCl, 1 mol/L H₂ SO₄, 1mol/L HNO₃, 3% NaCl 和 1 mol/L NaOH 溶液中的腐蚀速率. 结果表 明,Cu-Zr-Ti-Nb 非晶合金即使在 1 mol/L NaOH 溶液中浸蚀 336 h,也没有质量损失,说明它在碱性 溶液中具有相当好的耐腐蚀能力. 在 1 mol/L HCl 和 3%NaCl 溶液中,随着铌含量的增加,(Cu_{0.6} Zr_{0.3} Ti_{0.1})_{100-x} Nb_x 的腐蚀速率显著降低. 在 1 mol/L H₂SO₄和 1 mol/L HNO₃中,这种影响更加明显,而 且当铌含量达到或超过 3%时,几乎测不出试样的 质量损失. 由此表明,Cu-Zr-Ti-Nb 非晶合金系具有 较高的耐腐蚀能力.

利用铜模真空吸铸法制备直径 2 mm 的柱状 (Cu_{0.6} Hf_{0.25} Ti_{0.15})₉₈ M₂ (M=Mo, Ta 或 Nb)块体非 晶合金,采用阳极极化方法研究该合金在 1 mol/L HCl 和 3% NaCl 溶液中的腐蚀行为^[8]. 尽管阳极极

化腐蚀的作用使这些试样表面产生腐蚀损斑,但它 们均会发生自发钝化,含钼、钼和铌的块体非晶合金 具有较高的腐蚀电位和较低的阳极维钝电流密度, 具有较高的耐腐蚀性能.加钽、铌的阳极极化曲线偏 移幅度比加钼的要大,说明加钽和铌更能提高抗腐 蚀能力.此外,加了钼、钛和铌的合金在酸或盐溶液 中的腐蚀速率都明显降低,尤其是在盐溶液中,其腐 蚀速率几乎小到难以测量,值得注意的是,不管是在 酸溶液还是在盐溶液中,加钽和铌的腐蚀速率都比 加钼的要稍小一点. 据此可认为,在 Cu-Zr-Ti 块体 非晶合金中加入铌会降低铜在表面膜的聚集,同时 会提高锆、钛和铌的聚集,从而导致富锆(钛和铌)保 护膜的形成.考虑到在元素周期表中属于同一族的 锆和铪的原子电性和化学性质的相似性[9],可以推 测往 Cu-Hf-Ti 非晶合金中加入铌或钽也会降低铜 在表面膜的聚集,从而有利干富铪(钛,钼或铌)保护 膜的形成.

2.3 铜基非晶合金的晶化行为

铜基非晶合金是一种短程有序而长程无序的固态物质,处于不稳定的"亚稳"状态,因此其热稳定性问题是材料工作者必须首先解决的问题.

本课题组用定温法和多重扫描速率法得到的 DSC曲线来研究直径 3 mm 的柱状Cu₅₈ Zr₂₀ Ti₂₀ Mo₂ 块体非晶合金的晶化行为^[10].多重扫描速率法是在 Perkin-Elmer DSC-7型示差扫描量热仪上进行的, 所选用的升温速率依次为 4,12,20,28 K/min.

从图 1 可看出,随着加热速率 β 的增加,玻璃化 转变温度 T_{a} 、晶化温度 T_{x} 及 DSC 曲线上的峰值温 度 T_{p1} 和 T_{p2} 均向高温区移动,说明 Cu₅₈ Zr₂₀ Ti₂₀ Mo₂ 块体非晶合金的晶化行为和玻璃转变行为均与加热 速率有关,玻璃转变和晶化都具有动力学效应.该非 晶态合金具有较好的晶化动力学效应,各特征温度 点随着升温速率的增加而明显向高温区移动.

根据 Kissinger 方程

$$\ln\left(\frac{\beta}{T_{pi}^{2}}\right) = \ln\frac{AR}{E_{k}} - \frac{E_{k}}{R} \frac{1}{T_{pi}}, i=1, 2, \Lambda \qquad (1)$$

可作如图 2 所示的 Kissinger 直线,利用最小二乘法 拟合出直线方程,根据直线斜率求得各阶段晶化激 活能参数 $\Delta E_{p1} = 353.0 \text{ kJ/mol}; \Delta E_{p2} = 311.8 \text{ kJ/mol}, \Delta E_{g} = 434.8 \text{ kJ/mol}, \Delta E_{x} = 378.0 \text{ kJ/mol}.$ 可以看出, ΔE_{g} 最大, ΔE_{x} 和 ΔE_{p1} 相当,符合非晶的 特性.从固态到过冷态,原子扩散要比在过冷态下原

- 图 1 块体非晶 Cu₅₈ Zr₂₀ Ti₂₀ Mo₂ 在不同升温速率下的 DSC 曲线
- Fig. 1 Differential scanning calorimetric (DSC) curves of bulk $Cu_{58} Zr_{20} Ti_{20} Mo_2$ metallic glassy alloys at different heating rate

- 图 2 块体非晶 Cu₅₈ Zr₂₀ Ti₂₀ Mo₂ 的玻璃转变温度 T_g, 起始晶化温度 T_x,各晶化峰值温度 T_{pi} 的 Kissinger 直线
- Fig. 2 Kissinger plot of glass transition temperature (T_g) , crystallization onset temperature (T_x) and crystallization peak temperature (T_{pi}) for the Cu₅₈Zr₂₀ Ti₂₀ Mo₂ bulk metallic glassy alloy

子发生晶化困难,需要更大的能量势垒,发生转变的 激活能就较大,故 ΔE_g 最大.

根据 Ozawa 方程计算得到的结果与 Kissinger 法基本相同.

采用 TA Instrument 型差热分析仪(DTA)在 DSC-TGA 模式下对 Cu₅₉ Zr₃₀ Ti₁₀ Sn₁ 块体非晶合金 进行 DSC 热分析. Cu₆₀ Zr₃₀ Ti₁₀ 块体非晶的 T_g 为 426. 5 C, T_x 为 467. 7 C, ΔT_x 为 41. 2 C, 添加 1% Sn 后, T_g 向低温区移动, 变为 422. 5 C, 而 T_x , T_{p1} 和 T_{p2} 都向高温区移动, ΔT_x 提高到 53. 3 C,表明添加 适量 Sn 元素后,合金玻璃形成能力提高,热稳定性 增强.

一般认为 T_s是块体非晶合金的本征属性,仅与 冷却速率和材料的成分有关.但是 T_{xl}与液淬后非晶 的状态密切相关,当非晶中存在淬态核时,非晶合金 的晶化温度随淬态核的出现而下降. A. Inoue 等^[11] 在研究铸态 Cu₆₀ Zr₃₀ Ti₁₀ 系合金时发现, XRD 证明 为非晶的合金实际上是由非晶和尺寸为4 nm 的淬 态核所构成的,这一发现说明铜基非晶是较易形成 淬态核的.因此,制备方法对铜基非晶合金的热稳定 性有影响,不同的制备方法所制备的块体非晶合金 晶化温度的差异应是由于淬态核的有无和多少所导 致,高的冷却速率提高了合金的热稳定性.

3 结束语

目前,国外关于大块非晶合金的研究主要集中 在日本和美国,相比较而言,我国在大块非晶合金的 研究方面起步较晚,但是进展较快.中科院物理所是 国内最早开展块体非晶合金研究的机构,他们研究 了多种合金体系的块体非晶,对于铜基块体非晶,他 们已经制得直径达 9 mm 的合金棒,处于国际领先 地位.

随着对新型铜基块体非晶合金的不断研究、制备技术的不断改进,以及对与大块非晶合金应用紧密相关的力学、热学、磁学等性能的深入了解,铜基块体非晶合金这种新型亚稳材料必将得到更为广泛的应用.但目前对大块金属玻璃形成能力的本质认识还不足,成分设计仍处于半经验阶段,其结构、性能和应用方面也有待于进一步研究.相信,大块非晶合金研究的不断深入必将翻开材料科学的新篇章.

参考文献:

- [1] 冯柳. 铜基块状非晶合金的制备及其性能测试研究[D]. 兰州: 兰州理工大学, 2004.
- [2] 赫雷,陈学定,袁子洲,等.大块非晶合金的研究进展[J]. 材料导报,2004,18(8);22-24.
- [3] 边赞. 大体积非晶材料的研究[D]. 北京: 北京科技大学,2001.
- [4]黄劲松,刘咏,陈仕奇,等. 锆基非晶合金的研究进展与应用[J].中国有色金属学报,2003,13(6):1321-1332.
- [5] Inoue A, Zhang W, Zhang T, et al. Cu-Based Bulk Glassy Alloys with Good Mechanical Properties in Cu-Zr-Hf-Ti System[J]. Mater Trans, 2001,42(8):1805-1812.
- [6] Chen Y, Zhang T, Zhang W, et al. Microstructure Feature of Bulk Glassy Cu₅₀ Zr₃₀ Ti₁₀ Alloy in As-cast and Annealed States[J]. Mater Trans, 2002, 43(10): 2647-2650.
- [7] Qin C, Asami K, Zhang T, et al. Corrosion Behavior of Cu-Zr-Ti-Nb Bulk Glassy Alloys [J]. Mater Trans, 2003,44(4):749-753.
- [8] Qin C. Asami K. Zhang T. et al. Effects of Additional Elements on the Glass Formation and Corrosion Behavior of Bulk Glassy Cu-Hf-Ti Alloys [J]. Mater Trans. 2003,44(5):1042-1045.
- [9] Japan Institute of Metals. Metals Databook[M]. Tokyo: Maruzen, 1983.
- [10] 仇在宏. CuZrTi 系块体非晶合金的制备及部分性能研 究[D]. 广州:广东工业大学, 2005.
- [11] Inoue A, Zhang W, Zhang T. Thermal and Mechanical Properties of Cu-Based Cu-Zr-Ti Bulk Glassy Alloys
 [J]. Acta Mater, 2001,49(6): 2645-2652.

Development of Cu-base bulk amorphous alloys

ZHANG Yong-zhang, XIE Zhi-wei, YANG Yuan-zheng, HU Mei-xian (Guangdong University of Technology, Guangzhou 510006, China)

Abstract: The Cu-base bulk amorphous series and their different preparation methods are briefly introduced in the paper. It summarizes the mechanical properties and corrosion resistance properties and thermal stability of Cu-base bulk amorphous alloys, analyses the thermodynamic behavior of Cu-base bulk amorphous alloys in the crystalization process, and also puts forward the development of Cu-base bulk amorphous alloys briefly.

Key words: Cu-base amorphous alloys; preparation; mechanical properties; thermal stability