Vol. 15, No. 4 Dec. 2 0 0 5

JOURNAL OF GUANGDONG NON-FERROUS METALS

文章编号: 1003-7837(2005)04-0009-04

提高高纯 GeO2产品质量的生产实践

吴成春,韦德球

(中金岭南韶关冶炼厂马坝分厂,广东 韶关 512100)

摘 要:对影响高纯 GeO₂产品质量的原因进行了分析,并提出相应解决措施.生产工艺改进之后,高纯 GeO₂合格率由原来的 70%提高到 90%以上.

关键词:高纯 GeO2; 氯化蒸馏; 精馏; 水解

中国分类号: TF111.1; TF111.3 文献标识码: A

在高纯 GeO_2 产品中,对 As, Fe, Cu, Ni, Pb, Ca, Mg, Si, Co, In, Zn 和 Al 等杂质的含量有着严格的要求,且对产品的含氯量及粒度也有特定的要求. 降低高纯 GeO_2 的杂质含量是提高产品质量的关键.

韶关冶炼厂的高纯 GeO₂车间自 2001 年建成投产后,产品质量不够稳定,不合格的指标主要有: 砷含量、氯含量和粒度,其它杂质元素的含量都合格.高纯 GeO₂产品的一次产出合格率在 70%~80%之间,返工较多,影响了产能的扩大及增加了生产成本,因此,有必要对造成不合格的原因进行分析,以改进工艺操作条件,提高产品质量.

本厂高纯 GeO₂生产工艺基本原理 及流程

生产高纯 GeO₂ 的原料是真空挥发炉处理硬锌产出的锗渣,真空炉锗渣具有含 Zn, Pb, As, In 和

Ge 高、合金态渣型及难破碎等特点,因此,采用综合回收锌、锗、铟,富集铅和银的工艺流程.生产工艺基本过程为:将真空炉渣先进行球磨破碎,然后进行中性浸出除锌,除锌后的锗渣再进行氧化焙烧、破碎,焙烧好的锗渣直接加入搪瓷反应釜中进行氯化蒸馏,得到粗四氯化锗后,再进行复蒸、精馏提纯,最后用去离子水水解得到高纯氧化锗产品.工艺流程如图 1 所示.

2 高纯 GeO₂产品合格率偏低的原因 分析

2.1 产品含 As 量不合格

2.1.1 原料含 As 过高

本厂提锗的原料是将硬锌用真空炉蒸锌后产出的其中一种残渣, 化学成分见表 1.

表 1 真空炉锗渣及其酸浸除锌后的成分

Table 1 Components of Ge slag in vacuum furnace and after zinc remeoval by acld leach

锗渣	元 寮含量 w/%						
相但	Ge	In	Ag	Zn	Pb	As	
真空炉锗渣	1~2	0,8~1,6	0.23~0.27	45~55	15~25	6.5~8.0	
除锌后锗渣	2.0~2.5	1.5~2.0	0.3~0.4	8~12	30~45	8.0~11	

收稿日期:2005-01-27

作者简介: 吴成春(1973一),男,广西浦北人,工程师,本科。

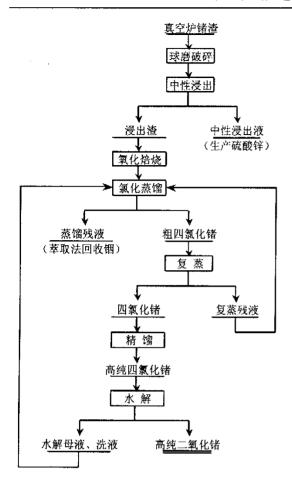


图 1 从真空炉锗渣中提取高纯二氧化锗的工艺流程图 Fig. 1 Process flow sheet for extracting high-purity GeO₂ from Ge slag in vacuum furnace

2.1.2 除 砷

在锗的生产过程中,主要通过氯化蒸馏、复蒸、精馏等工序分离除砷.绝大部分砷可在氯化蒸馏过程中氧化除去.在氯化蒸馏过程中,杂质钙、铁、铝、镁及重金属氯化物的沸点很高(表 2)^[1],在蒸馏温度下大部分保留在盐酸溶液中,只有 AsCl₃ 因与GeCl₄的沸点接近(AsCl₃ 为 130℃,GeCl₄ 为 83℃),两者不易分开,需通人氯气把 AsCl₃氧化成高价的砷酸.反应式为

 $AsCl_3 + 4H_2O + Cl_2 - H_3AsO_4 + 5HCl$

在浸出过程中,有时因通氯量不足,会有部分砷以 $AsCl_3$ 形式被蒸出,进入粗 $GeCl_4$. 尤其蒸馏后期,蒸馏温度高达 120 C 左右,砷更易被蒸出. 有时粗 $GeCl_4$ 中含砷达到 15 g/L,而进入高纯系统粗 $GeCl_4$ 的砷要求在 5 g/L 以下.

表 2 一些常见氯化物在不同压力下的沸点

Table 2 Boiling points of some ordinary chlorides at different pressures

氯化物	压力/kPa	沸点/℃	熔点/℃	
	0. 133	194.0		
	1. 33	235.5		
P-Cl	5, 32	256.8	204	
FeCl ₃	13.3	272.5	304	
	53. 2	298.0		
	101.08	319.0		
	0, 133	100		
	1, 33	123.8		
A 1C1	5. 32	139,9	102.4	
AlCl₃	13, 3	152.0	192. 4	
	53, 2	171.6		
	101.08	180.2		
	0, 133	778		
	1.33	930		
M OI	5.32	1050	710	
MgCl ₂	13, 3	1142	712	
	53. 2	1316		
	101.08	1418		
	0. 133	428		
	1, 33	508		
7.01	5.32	516	0.05	
ZnCl₂	13.3	610	365	
	53. 2	689		
	101.08	732		
	0. 133	547	F01	
	1, 33	648		
DLC!	5.32	725		
PbCl ₂	13. 3	784	501	
	53. 2	893		
	101.08	954		

复蒸除砷的原理与氯化蒸馏是相同的,利用GeCl₄与其它氯化物沸点的差异再次通过蒸馏来初步提纯GeCl₄. 将氯化蒸馏产出的粗GeCl₄投入反应釜中,加人纯盐酸和纯水,通入氯气进一步氧化除As及分离其它杂质. 在复蒸工序中,可除去粗GeCl₄中的绝大部分砷,使产出的GeCl₄含砷降至0.001g/L左右,复蒸除砷效率为98%~99%.

砷的最后达标是在精馏塔中完成的,精馏的原理是利用多层的精馏塔板进行反复的气化和液化,

达到 GeCl₄与 As 分离的目的,从而使 GeCl₄得到提纯.在实际操作中 As 的脱除程度,除了与回流比、精馏温度有关外,还与塔釜中高沸点物的抽取有关.每一座塔在精馏时,因 GeCl₄中的 AsCl₅含量极少,在沸腾状态下混合物的温度变化不大,相对挥发度

a 接近常数,而精馏塔是密封的,釜内的高沸点抽取物没有及时排放,造成 AsCl。在釜内积累. AsCl。在釜内积累变化情况见表 3. 当产品分析含量临界时才抽取一次高沸点物,由于分析滞后的原因,常会因抽取不及时而造成砷超标.

表 3 AsCla在釜内积累变化情况

Table 3 Accumulation and variation of AsCl3 in a still

时间/天	1	2	3	4	5	6	7	8	9	10
AsCl₃含量/(g・L ¹)	0.001		0. 0025	0.004	0.0055	0.007	0.0095	0.013	0.015	0.019

2.2 产品含氯量不合格

高纯 GeO₂产品要求含氯量不超过 0.05%,但在生产过程中,经常会超标,主要原因有以下几个方面:(1)水解后 GeO₂的洗涤水量太少,未能将 GeO₂中吸附的 Cl 完全洗去.(2)空气质量不好.由于水解房空气过滤系统不是很好,经常堵塞,房内常呈负压状态,空气从门缝漏入水解房内,从而污染了 GeO₂产品.(3)水解操作条件控制不当,产品颗粒偏大,包裹有 HCl,洗不干净.(4)真空泵抽力不好。蝶阀式真空泵采用的是油封,抽滤时,常有水进入油中,抽力不够,造成 GeO₂抽不干,洗不干净.

2.3 产品粒度不合格

产品标准要求高纯 GeO₂ 的粒度是 0.074 mm (200 目)以下的占 95%以上,但在生产中,经常出现不合格.主要原因有两个方面:(1)加料速度不均匀.加料速度太快时,由于水解过程来不及反应完全,因而形成了包含有 GeCl₄ 液滴的坚硬 GeO₂ 外壳的大颗粒;加料速度太慢时,产品起糊状,反而结团.(2)水解冷却效果不好.有机水解槽传热效果不好,影响了水解散热,每槽水解加完料后,槽内温度上升到45℃左右,当水解温度高时,对晶体长大和聚集有利,易形成较大颗粒.

3 改进措施及生产效果

3.1 改进措施

3.1.1 As 含量不合格的措施

针对 As 含量不合格,于 2003 年 6 月采取以下几个措施:(1) 氯化蒸馏工序中,每釜加人 2~3 kg 三氯化铁加强氧化效率,使 As 尽量氧化成高价砷;

控制低温蒸馏,在蒸馏过程中基本控制温度在90~100℃之间,尽量减少砷的蒸出.(2)提高人员操作技能,准确截取高沸点物和低沸点物.(3)定期取样化验,每10天抽取一次高沸点料液,确保精馏釜内GeCl₄含砷保持在较低水平.

3.1.2 Cl⁻含量不合格的措施

针对 Cl⁻含量不合格,采取的措施如下:(1)于 2003年7月改进真空抽滤系统,由原来的蝶阀式改为水循环式,解决了水分进入泵中,影响抽力的问题;(2)于 2003年8月安装了一台空气洗涤器,空气经过淋洗除尘后才能鼓入水解房,解决过滤器的堵塞问题,且水解房内保持微正压,确保水解房内空气的清洁;(3)加大洗水量,每槽二氧化锗洗水量由原来水解体积的3倍提高到5倍,确保 Cl⁻能全部洗净.

3.1.3 粒度不合格的措施

针对粒度不合格,采取的措施如下:(1)2003 年5月后加料速度改为 45~55 mL/min,加完料后,搅拌时间为 1 h;(2)为了加强冷却效果,2003 年 6 月底将有机水解槽改进为钛材水解槽,由于钛材传热效果好,每槽四氯化锗水解加完料后的温度由原来的 45℃左右下降至 20℃左右,有效地解决了水解冷却的问题.

3.2 工艺改进后的生产效果

采取上述各项措施后,经过 2003 年 7 月以来的 生产实践验证,产品的一次合格率逐步提高,2003 年 9 月份后保持在 92%以上,有效地提高了产品质量,降低了生产成本. 2002 年 1 月至 2004 年 9 月高 纯 GeO₂产品质量统计列于表 4.

表 4 2002 年 1 月至 2004 年 9 月高纯 GeO₂产品一次产出合格率统计表

Table 4 Statistics of one-time output qualified rate of high-purity GeO₂ product from Jan. 2002 to Sep. 2004

	产出量	As 不合格量	氣不合格量	粒度不合格量	不合格量合计	一次产出合格率	
미테테	时间 /kg	/kg	/kg	/kg	/kg	/ %	
2002年1-6月	2780	140	203	490	833	70.04	
2002年7-12月	3050	159	490	102	751	75.38	
2003年1-6月	3730	152	468	140	760	79.62	
2003年7-12月	3450	84	120	72	276	92.00	
2004年1-6月	4410	70	110	0	180	95, 92	
2004年7-9月	2313	44	46	0	90	96, 11	

4 结 论

- (1)氟化蒸馏加入 FeCl₃,基本可确保 GeCl₄含 砷在 5 g/L 以下,较大程度地减轻了提纯工序的压力.
- (2)定期抽取高沸点物,保证了塔釜内的产品在较低砷含量下精馏.
 - (3)经过改进空气过滤系统和更换抽滤设备、增

加洗水量,保证了氯离子含量的达标.

(4)水解槽由有机槽改为钛材槽后,水解效果更好,且钛能耐酸蚀.

参考文献:

[1] 吴绪礼. 锗及其冶金[M]. 北京:冶金工业出版 社,1988.

Production practice for improving quality of high-purity GeO₂

WU Cheng-chun, WEI De-qiu

(Maba Branch of Shaoguan Metallurgical Plant of Zhongjin Lingnan Corporation, Shaoguan 512100. China)

Abstract: The reasons for affecting quality of high-purity GeO₂ product is analysed in this paper. Some solution measures are put forward. After the technology is improved, the qualified rate of high-purity GeO₂ is raised 70% to 90%.

Key words; high-purity GeO2; chlorinated distillation; rectification; hydrolysis