文章编号:1003-7837(2001)02-0099-04

廉江银矿浮选试验及生产实践

周晓彤

(广州有色金属研究院选矿工程研究所,广东 广州 510651)

摘 要:针对廉江银矿的银在矿石中与硫化矿共生的性质,采用一段磨矿(细度 76% - 0.074 mm)、一粗一精 :扫的混合浮选流程及 NAB 混合捕收剂进行工业试验和生产调试,当给矿品位 553 g/t Ag 时,得到银精矿品位 12.88 kg/t Ag,银回收率达 93.43%。

关键词:银矿石;捕收剂;混合浮选

中图分类号: TD923

文献标识码: Λ

廉江银矿属中、低温热液破碎带裂隙充填石英硫化矿床,是我国近期发现的单一银矿资源基地之一.根据小型试验结果,选厂采用了"混合浮选法回收银,选厂竣工后,利用副产矿石进行试生产,生产指标不够理想,后来改造流程,进行了工业试验及生产调试,银精矿品位达12.88 kg/t Ag,银回收率达93.43%.

1 矿石性质

银在矿石中主要呈辉银矿(螺状硫银矿)、硫锑铜银矿,银矿物的嵌布粒度属中等偏细,以细粒居多,一般为 0.04~0.32 mm,最大 0.8 mm,最小 0.0005 mm,部分银呈包裹状存在于方铅矿、黄铜矿、石英、闪锌矿和黄铁矿内或裂隙之间、银的载体矿物方铅矿、闪锌矿和黄铁矿的氧化程度低,浮游性好.

原矿多元素分析(质量分数)为; Ag~378~g/t, Au~0.41~g/t, Pb~0.75%, Zn~0.52%, S1.03%, As<0.01%, Mg~0.38%, CaO~0.32%, $SiO_2~78.67\%$, $Al_2O_3~6.91\%$. 银在主要矿物中的分布见表 1.

表 1 银在主要矿物中的分布

Table 1 Distribution of Ag in the main minerals

	矿物名称						A21.
	辉银矿和硫锑铜银矿	方铅矿	闪锌矿	黄铜矿	黄铁矿	脉石	合计
分布率 w/%	76. 56	8. 42	4.40	0. 50	4. 54	5- 58	100.00

收稿日期: 2001-06-15

作者简介:周晓彤(1967-)女、湖南武冈人、工程师、学士。

2 流程的选择

根据矿石性质, 着重进行了"混合浮选"与"优先浮选"试验, 经试验确定磨矿细度为 76% -0.074 mm.

2.1 混合浮选

在自然 pH 条件下,混合捕收银矿物、方铅矿和闪锌矿等有用矿物、试验流程为一粗一精二扫. 试验中所用药剂及其用量为:水玻璃 1 kg/t、硫酸铜 200 g/t、NAB 混合捕收剂 80 g/t、2 号油 27 g/t. 混合浮选闭路试验结果如表 2 所示. 由表 2 可知,对 378 g/t Ag 原矿,得到精矿含 8949 g/t Ag,银回收率为 92. 14%,精矿中铅和锌的品位分别为 18. 09%和 13. 95%,回收率分别为 92. 49%和 92. 92%.

表 2 混合浮选闭路试验结果
Table 2 Results of the bulk flotation closed-circuit test

产品名称	**** (0/	品位/%			回收率/%			
		$\overline{\mathrm{Ag}/(\mathrm{g}\cdot\mathrm{t}^{-1})}$	Pb	Zn	Ag	Pb	Zn	
精矿	3. 90	8949	18.09	13. 95	92- 14	92.49	92. 92	
尾矿	96.10	31	0.06	0.04	7. 86	7.51	7.08	
原矿	100.00	378	0.76	0. 58	100, 00	100.00	100, 00	

2.2 优选浮选

原矿中目的矿物的天然可浮性顺序为:方铅矿〉辉银矿〉硫锑铜银矿〉黄铁矿〉闪锌矿、由于矿石中的部分载体矿物——闪锌矿的天然可浮性差,故可先抑制闪锌矿,优先浮选铅银矿物,再浮锌银矿物和黄铁矿. 其流程为一粗一精优选浮铅银和一粗二精二扫再浮锌银. 优先浮选试验中所用药剂及其用量为: 水玻璃 1 kg/t、硫酸锌 1 kg/t、碳酸钠 1.5 kg/t、NAB 混合捕收剂 104 g/t、硫酸铜 300 g/t、2 号油 45 g/t. 优先浮选闭路试验结果如表 3 所示. 由表 3 可知,铅银精矿品位为 20 555 g/t Ag 和 41. 82%Pb,铅和银的回收率分别为 72. 26%和 80. 23%;锌银精矿品位为 2 176 g/t Ag 和 34. 18%Zn,锌和银的回收率分别为 66. 52%和 7. 33%. 银的总回收率为 87. 56%.

表 3 优先浮选闭路试验结果
Table 3 Results of the selective flotation closed-circuit test

产品名称	产率 w/%	41	回收率/%				
		$\overline{\mathrm{Ag/(g \cdot t^{-1})}}$	Pb	Zn	Ag	Pb	Zn
铅银精矿	1. 24	20 555	41.82	6. 26	80, 23	72, 26	14. 12
锌银精矿	1. 07	2 176	2.04	34.18	7. 33	3.04	66. 52
硫中矿	9, 27	178	0, 96	0.86	5. 20	12.38	14.54
尾矿	88. 42	26	0.10	0.03	7. 24	12. 32	4.82.
原矿	100.00	318	0.72	0.55	100.00	100.00	100, 00

混合浮选流程简单、占地面积小、药剂种类及其用量少,最终只有混合浮选精矿一种产品,银精矿品位为 8 949 g/t Ag,银回收率为 92.14%,银回收率较高.优先浮选流程较复杂、药剂种类较多,加药点较多,药剂用量较大,优先浮选铅银精矿品位为 20 555 g/t Ag 和 41.82% Pb,锌银精矿品位为 2 176 g/t Ag 和 34.18%Zn,银的总回收率为 87.56%,银的回收率较低. 经综合比较混合浮选与优先浮选的优缺点,最后推荐采用"混合浮选流程".

3 工业实践

廉江银矿选厂经过一段时间的试产,磨浮作业存在不少问题,为使选厂达到设计指标,即给矿含 380~470 g/t Ag,产出银精矿品位 10~15 kg/t Ag,银回收率 88.5%~91.5%,必须对选厂的工艺流程进行改造.

3.1 选厂工艺流程改造

现场洗矿溢流经浓缩后,其沉砂间断地排出.由于原生产流程将沉砂直接给入浮选,所以造成浮选不稳定,影响浮选.洗矿浓密机沉砂的细度为80%-0.074 mm,已符合浮选对矿石细度的要求,但由于仍混有粗砂,故将洗矿沉砂与球磨机排矿合并进入螺旋分级机,这样既可排除粗砂对浮选的影响,又能增强浮选给矿的稳定性,有利于浮选作业指标的稳定.

磨矿为一段磨矿,原生产流程磨矿细度为 71%-0.074 mm,后将磨矿细度提高到 73%-0.074 mm.

3.2 工业试验及生产调试

矿石来源于主矿体的东部 1,2,3 号采场,并搭配部分西部 1 号采场地段的矿石,矿石性质与小型试验的矿石性质相似. 采用"混合浮选"进行工业试验、磨矿-浮选段的原则流程如图 1 所示. 磨矿细度为 73%-0.074 mm,粗选作业中所用浮选药剂种类及用量为:水玻璃 $54\sim91$ g/t、硫酸铜 $59\sim76$ g/t、NAB 混合捕收剂 $22\sim29$ g/t,2 号油 $39\sim52$ g/t;扫选作业中 NAB 混合捕收剂为 $15\sim19$ g/t. 选厂连续运转 55 h,处理矿石 540 t,给矿品位 607 g/t Ag 时,获得工业试验平均指标为:银精矿 13.47 kg/t Ag,银回收率为 90.68%;精矿中铅、锌回收率分别为 92%和 86%.

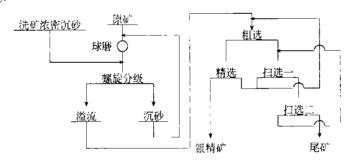


图 1 磨矿-浮选段原则流程

Fig. 1 Principl flowsheet of grinding-flotation stage

为进一步提高生产指标,对工业试验中的尾矿进行筛析得知,尾矿中结合银占 56.2%, +0.074 mm 粒级中银的占有率为 65.20%,由于浮选采用"虹吸法"给药,所以造成给药量波 动较大,也影响选别指标.针对以上问题,采取如下改进措施:(1)提高磨矿细度,使其达到原设计的 76%-0.074 mm;(2)改用广州有色金属研究院研制的微机给药系统,取代原有的虹吸给药.根据所用药剂的用量和浓度,设计排药口的大小,确定每分钟的开关次数和流量,每次给药量及间隔时间相等,使给药量精确,浮选操作更稳定.采用微机给药系统之后,当原矿有波动时,可以根据浮选操作情况,随时调整各给药点的加药量,使选厂生产过程和生产指标更加稳定.

经过一个月的生产调试,给矿品位 553 g/t Ag 时,获得银精矿品位为 12.88 kg/t Ag. 银回 收率达 93.43%.

4 结 论

廉江银矿适于采用"混合浮选". 混合浮选流程简单,药剂种类及其用量少. 采用微机给药,操作方便,加药量准确,生产指标稳定. 经工业试验及生产调试后,给矿品位 553 g/t Ag 时,获得银精矿品位为 12.88 kg/t Ag,银回收率达 93.43%.

Flotation test and production practice in Lianjiang Silver Mine

ZHOU Xiao-tong

(Research Department of Mineral processing Engineering, Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651, China)

Abstract: In the light of the nature that silver contained in the ore in Lianjiang Silver Mine is associated with sulfide minerials, a bulk flotation circuit, which consisted of one-stage grinding (76% – 0.074 mm), one-stage roughing, one-stage cleaning and two-stage scavenging, with NAB mixed collector used, was adopted in the commercial test and test-run. The grade of feed was 553 g/t Ag, the grade of resultant concentrate was 12.88 kg/t Ag and the recovery of silver was 93.43%.

Kev words: silver ore: collector; bulk flotation