Vol. 10, No. 2 Nov. 2000

文章编号: 1003-7837(2000)02-0100-04

用高效捕收剂 Y89 分选铜录山 难选泥质氧化铜矿石的研究

向 平1, 顾 愚²

(1. 株洲选矿药剂厂,湖南 株洲 412005, 2. 广州有色金属研究院,广东 广州 510651)

摘 要:用 Y89-0 黄药和异丁基黄药分别作捕收剂分选铜录山难选泥质氧化铜矿石,结果表明,在选 矿指标相近的情况下,Y89-0 用量比异丁基黄药用量少 30%~40%;采用硫化铜和氧化铜矿物混合 浮选的流程,在药剂用量相同的条件下,用 Y89-0 比用异丁基黄药所获得的铜精矿含 Cu 高 2 18%, 含 Au 高 6.5 g/t, Cu 回收率高 1.37%, Au 回收率高 9.32%.

关键词:氧化矿;铜矿物;混合浮选;黄药类捕收剂

中图分类号: TD923⁺.13 文献标识码: A

铜录山矿是大型矽卡岩型铜铁矿,属接触交代高中温热液型矿床.矿石按自然类型可分为 硫化矿、混合矿及氧化矿三种.自1970年投产后,为提高选矿指标,该矿与多家研究单位合作, 进行了一系列的研究工作。由于近年来入选原矿品位不断下降,矿石氧化率高,含泥量大,使氧 化矿矿石的选别变得越来越困难. 现场分选泥质氧化铜矿获得的选矿指标较差,铜精矿品位约 为 15%(质量分数,下同),铜回收率约为 40%.

Y89 系列黄药是近年来研制成功的高效捕收剂,已在国内多家铜金矿山使用,选别效果良 好. Y89 黄药分子碳链长,并具有独特的分支结构,决定了它的捕收力强、选择性好. 多家矿山 的选矿试验研究和生产实践表明,用它代替普通黄药能提高铜金精矿品位及回收率.本文介绍 用 Y89-0 黄药和异丁基黄药分别作捕收剂分选铜录山难选泥质氧化铜矿石.

1 矿石性质

矿样取自铜录山矿采场矿堆,矿样中的金属矿物主要有磁铁矿、赤铁矿、褐铁矿、孔雀石、 假孔雀石、蓝铜矿等,脉石矿物主要有石英、玉髓、高岭石和蒙脱石等.原矿主要成分(质量分 数,%)为:Cu 1.19,Fe 29.68,其中 Au 1.06 g/t. 原矿中铜物相的分析结果见表 1.

收稿日期:2000-01-20

作者简介: 向平(1966一),男(土家族),湖南吉首人,工程师,学士.

矿样为品位较低、氧化率高、并含大量原生矿泥的难选氧化铜矿石,当入选矿石细度为-0.074 mm 63%~68%时,-0.037 mm 细泥 _ 含量高达 38%~41%,

表 I 原矿中铜物相的分析结果

Table 1 Material phase analysis of copper in the crude ore

	硫化铜	自由氧化铜	结合氧化铜
含量 w/%	0.17	0. 93	0.068
分布/%	14.56	77. 62	5. 82

2 流程方案试验

原矿中硫化铜占铜总量不足 15%,85%以上为氧化铜,按常规方法可以先选硫化铜,后选氧化铜(简称优先浮选);或者将硫化铜与氧化铜一起浮选(简称混合浮选).根据这两个方案用 Y89-0 作捕收剂进行了探索试验,试验流程及条件见图 1 和图 2,试验结果见表 2.

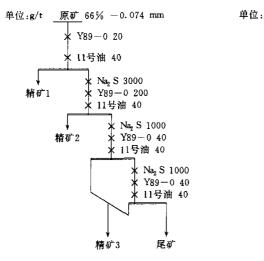


图 1 优先浮选试验流程 Fig. 1 Flowsheet of preferential flotation test

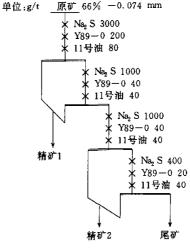


图 2 混合浮选试验流程 Fig. 2 Flowsheet of bulk flotation test

表 2 流程方案探索试验结果对比

Table 2 Comparison of the exploration test results by two flowsheet (质量分数,%)

流程	产物名称	产率	品位	回收率
优先浮选	精矿1	3. 46	2. 76	8. 20
	精矿 2	7.52	6.34	40.92
	精矿3	8.04	2.64	18. 22
	精矿 1+2+3	19.02	4. 13	67.34
	尾矿	80. 98	0.47	32.66
	原矿	100.00	1.17	100.00
混合浮选	精矿 1	15. 62	4. 09	53. 92
	精矿 2	8. 13	2.68	18.40
	精矿 1+2	23.75	3.61	72.32
	尾矿	76. 25	0.43	27.68
	原矿	100.00	1. 18	100.00

由表 2 可知,在铜精矿品位相近的情况下,混合浮选的回收率比优先浮选的回收率高 5%.

3 捕收剂对比试验

3.1 用量试验

按图 3 所示流程及条件分别进行了异丁基黄药及 Y89-0 的用量试验,试验结果示于图 4.

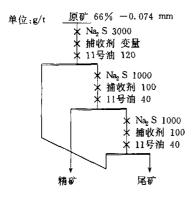


图 3 捕收剂用量试验流程

Fig. 3 Flowsheet of collector dose test

图 4 表明:(1)在铜精矿品位相近时,无论 捕收剂用量高低,用 Y89-0 获得的铜回收率均高于异丁基黄药.在捕收剂用量高时,铜的回收率差别较小;在捕收剂用量低时,铜回收率差别较大.(2)在异丁基黄药用量为 550~650 g/t的条件下获得的铜回收率,与 Y89-0 用量为350~450 g/t 条件下获得的铜回收率相近,铜精矿品位相差不多.故在指标相近的情况下,用 Y89-0 比用异丁基黄药可节约药剂用量 30%~40%.(3)在药剂用量约为 550 g/t 时,两种捕收剂获得的选矿指标都较好.

3.2 闭路试验

根据捕收剂用量试验,分别进行了 Y89-0 和异丁基黄药用量均为 600 g/t 的闭路流程试验,试验流程见图 5,试验结果见表 3. 由表 3 可知,用 Y89-0 获得的选别指标明显优于用异丁基黄药,其中铜精矿品位高 2. 18%,含 Au 高6.5 g/t,铜回收率高1.37%,金回收率高

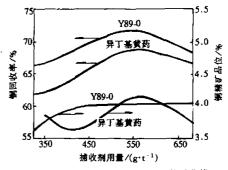


图 4 捕收剂用量与品位、回收率的关系曲线

Fig. 4 Relations between collector dose and grade/ recovery

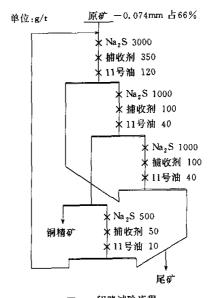


图 5 闭路试验流程 Fig. 5 Flowsheet of the closed—circuit test

9.32%, 由此可看出, Y89-0 黄药的捕收能力和选择性均优于异丁基黄药.

表 3 闭路试验结果

Table 3 Results of the closed-circuit test

(质量分数,%)

捕收剂	产物名称	产率	品位		回收率	
			Cu	$Au/(g \cdot t^{-1})$	Cu	Au
Y89-0	铜精矿	3. 01	20. 96	29. 30	53. 05	77. 10
	尾矿	96.99	0.58	0.27	46. 95	22.90
	原矿	100.00	1. 19	1.14	100. 00	100.00
异丁基黄药	铜精矿	3. 30	18. 78	22. 80	51.68	67.78
	尾矿	96.70	0.60	0.37	48.32	32. 22
	原矿	100.00	1.20	1. 11	100.00	100.00

4 结 论

Y89 黄药的分子碳链长,并具有支链结构,决定其选择性好且捕收能力强,本试验进一步证实了这一结论. 用 Y89-0 和异丁基黄药分别作捕收剂分选铜录山难选泥质氧化铜矿石,在药剂用量相同的情况下,用 Y89-0 比用异丁基黄药所获得的铜精矿含 Cu 高 2. 18%,含 Au 高 6. 5 g/t, Cu 回收率高 1. 37%,Au 回收率高 9. 32%;在分选指标相近的情况下,用 Y89-0 黄药比用异丁基黄药可降低捕收剂用量 $30\%\sim40\%$.

Separation of the refractory earthy CuO ore in Tonglushan Mine by a high-efficiency collector Y89

XIANG Ping1, GU Yu2

- (1. Zhuzhou Mineral Processing Regents Plant, Zhuzhou 412005, Chian;
- 2. Guangzhou Research Institute of Non-Ferrous Metals, Guangzhou 510651, China)

Abstract: Y89-0 xanthate and isobutyl xanthate were used separately as collector to process the refractory earthy CuO ore in Tonglushan Mine. The test results show that, the dose of Y89-0 is 30%~40% less than that of isobutyl xanthate, provided the similar separation indexes; in a copper sulphide and cupric oxide bulk flotation flowsheet, with the same dose, Y89-0 can result in a copper concentrate containing Cu 2.18% higher, Au 6.5 g/t higher, the recovery of Cu 1.37% higher and the recovery of Au 9.32% higher than those by isobutyl xanthate.

Key words: oxide ore; copper mineral; bulk flotation; xanthate collectors