DOI:10.20038/j.cnki.mra.2024.000514

退火温度对溶胶-凝胶法氧化钨薄膜电致变色性能的影响

廖晴东

(广东工业大学材料与能源学院,广东广州 510006)

摘要:电致变色是指在外加电场的作用下电解质中离子嵌入材料中,使得材料本身光学特性发生变化的现象。电致变色材料被用于建筑隔热、装饰、信息显示等场景。氧化钨(WO₃)作为一种被广泛研究的无机电致变色材料,虽其储量丰富,但受制于苛刻的制备工艺,以及透明导电基底的昂贵价格,在光热调控场景中很少大面积使用无机电致变色薄膜。基于此,采用溶胶-凝胶法(Sol-gel),通过改变退火温度制备了结晶态和非晶态的氧化钨(WO₃)薄膜,同时探索了不同退火温度对其电致变色性能的影响。实验结果表明,随着退火温度(200、250、300和 350℃)的增加,薄膜由非晶态逐渐转变为结晶态,且薄膜内部结构趋于致密化。在退火温度 200℃下,薄膜呈现出最佳的电致变色性能及良好的反应可逆性,在1mol-L⁻¹的 AICl₃溶液中电压为-0.5 V时,薄膜在 633 nm 处的光学对比度为 79%; 而在 250、300和 350 ℃退火温度下,随着薄膜内部结构趋向于致密,当施加正向电压时嵌入的离子无法在短时间内脱离出来,使得薄膜的光学性质难以回复到初始的状态,造成着色褪色响应速度下降,导致光学对比度不同程度的降低,在 633 nm 处的光学对比度分别为 39.1%、23.7%和46.1%。其中,350 ℃退火的样品在光学对比度上呈现差异化,这归因于薄膜结晶,细微的晶界提供了较多的反应位点。本研究提供了一种简易的、低成本的制备 WO₃薄膜的方法,为大面积应用电致变色材料提供了理论参考。

关键词:氧化钨薄膜;电致变色;溶胶凝胶;AlCl₃;非晶薄膜;旋涂;退火温度;光学对比度
 中图分类号:TQ174
 文献标志码:A
 文章编号:1673-9981(2024)05-0803-06

引文格式:廖晴东. 退火温度对溶胶-凝胶法氧化钨薄膜电致变色性能的影响[J]. 材料研究与应用,2024,18(5):803-808. LIAO Qingdong. Effect of Annealing Temperature on the Electrochromic Properties of Tungsten Oxide Films by Sol-Gel Method[J]. Materials Research and Application,2024,18(5):803-808.

0 引言

根据中国建筑能耗研究报告,我国建筑物耗能 约占全部能源消耗的20%,而其中用于调节室内环 境温度的能耗占三分之二^[1]。在建筑玻璃上使用电 致变色材料,可成为降低能源消耗并改善室内环境 的有效方法。1984年,Granqvist^[2]提出电致变色智 能窗这一概念以来,电致变色材料已经历了数十年 的发展,但其仍局限于小范围、小场景的应用,如汽 车天幕、手机后壳等,而在智能窗的应用仍然受限。 前者使用的材料大多以高分子聚合物为主,常采用 涂布工艺,而后者则主要采用无机材料,这是由于无 机材料具有良好的循环稳定性和紫外线耐受性。其 中,WO₃具有强烈的近红外光吸收能力,是目前研 究最为广泛的材料。虽然我国WO₃材料储量丰富, 但在光热调控场景中大面积使用无机电致变色薄膜仍然价格不菲。造成这种现象的原因,主要是制备工艺要求苛刻,以及透明导电基底价格昂贵。基于此现状,尝试采用溶胶-凝胶法(Sol-gel)制备WO₃薄膜,以实现低成本、低工艺要求的目的。采用Sol-gel法制备WO₃薄膜时,一般选用六氯化钨(WCl₆)、偏钨酸铵和钨粉作为钨源^[3-5],由于WCl₆极易在空气中潮解需要隔绝水气使用,而偏钨酸铵价格较为昂贵,因此往往采用钨粉作为原料与过氧化氢(H₂O₂)反应生成过氧钨酸(PTA),老化溶液后得到溶胶,进一步旋涂成膜。此外,Sol-gel法是一种沉积电致变色WO₃薄膜的通用技术,其低的温度和廉价的设备需求,成为制备大面积薄膜的便捷方法。该法所制备的WO₃膜与导电基底结合力强、不容易

收稿日期:2023-04-03

作者简介:廖晴东,硕士研究生,研究方向为金属氧化物薄膜电致变色。E-mail: micdrop333@163.com。

脱落,并且还可以控制膜厚^[6]。

本文使用改良后的过氧钨酸为钨源,以氟掺杂 二氧化锡(FTO)作为导电基底,采用Sol-gel法制备 WO₃薄膜^[7],研究不同的退火温度对薄膜结构和电致 变色性能的影响。FTO相较于氧化铟锡透明导电基 底(ITO)具有更低的成本,同时化学稳定性更高^[8-9]。

1 实验部分

1.1 材料制备

WO₃薄膜的制备过程主要包含3个步骤。首先 用W粉和H₂O₂反应得到PTA溶液,然后将PTA和 乙酸反应得到乙酰化过氧钨酸,蒸干所得溶液,最后 得到乙酰化过氧钨酸粉末。将粉末溶解于无水乙醇 中,即得到WO₃溶胶。

1.1.1 PTA溶液的制备

首先将50 mL双氧水和5 mL去离子水混合,在 温度0℃下搅拌5 min。随后分批多次加入W粉,共 计8g。将混合物置于温度2℃下搅拌24h,得到略 显黄色的乳状溶液。将所得乳状溶液离心除去未完 全反应的粉末,得到无色透明的PTA溶液。因反应 会剧烈放热,制备过程需在低温下进行,但温度又不 能太低,以防止反应进行缓慢。

1.1.2 乙酰化过氧钨酸的制备

将所得的PTA溶液与50mL无水乙酸混合,于 55℃下回流12h,得到乙酰化的过氧钨酸溶液,蒸干 溶液得到白色的乙酰化过氧钨酸粉末。

1.1.3 WO₃薄膜的制备

称取1g乙酰化过氧钨酸粉末,加入3mL无水 乙醇,50℃下搅拌至溶解,得到淡黄色的透明溶胶 溶液(见图1)。每次取50μL溶胶溶液,滴涂在尺 寸为2 cm×4 cm的FTO玻璃上(型号TEC7,营口

图 1 WO₃溶胶的实物照片 Figure 1 WO₃ sol digital photo

利博科技有限公司生产)。使用旋涂仪(型号EZ4,安 塞斯(中国)生产),在转速2000 r·min⁻¹下旋涂30 s。 待溶胶成膜后。在100℃的热板上固化溶胶并持续 10 min。用马弗炉(型号MF-1100-S,安徽贝意克生 产)进行退火,其中退火温度分别设置为200、250、 300和350℃,升温速率为5℃·min⁻¹,保温时间1h。

1.2 材料表征

利用扫描电子显微镜(SEM,型号 SU8010, Hitachi生产),对样品的微观形貌进行表征。利用X 射线衍射仪(XRD,Rigaka Smart Lab9kW),铜Kα辐 射(电压45 kV,电流200 mA),确定物质组成和相 结构。利用紫外可见光分光光度计(型号TU-1810, 北京普析通用公司生产),进行透过率测试。

1.3 电致变色性能测试

采用三电极体系进行电化学测试。其中,WO。 薄膜作为工作电极、铂片作为对电极(尺寸大小 1 cm×1 cm,上海越磁电子科技有限公司生产)、银\氯 化银作为参比电极(型号R0303,天津艾达恒晟有限 公司生产),使用数字源表(Keithley 2450)给薄膜施 加电压。

2 结果与讨论

2.1 薄膜形貌和结构分析

制备WO₃薄膜时,应保证每次旋涂所用的溶胶 量相同,以及环境的湿度和温度相似。图2为不同 退火温度下WO₃薄膜的SEM图。从图2可以看出, 制备的WO₃薄膜厚度均在330 nm 左右。表明,所制 备薄膜的厚度基本一致,减少了厚度对薄膜电致变 色性能的影响。由于乙酰化过氧钨酸的分解温度约 为185 ℃^[10],而本实验中所有的退火温度都在200 ℃ 以上,所以改变退火温度会使得薄膜从无定形状态 转到结晶状态,这种转变对于薄膜厚度的影响略小。 从图2还可以看到,不同退火温度下薄膜均表现出 相对平整光滑的表面,并且无明显的差异。这也符 合旋涂工艺制备薄膜样品的特征。其中,200℃退 火样品薄膜表面相对略显粗糙,这对于电致变色性 能是有益的。另外,由于薄膜样品的导电性不够,同 时因为整个热处理温度区间跨度不大,也可能导致 薄膜处于部分结晶的状态。所以,即便在高退火温 度的样品中,也并未观察到明显的氧化钨晶粒及再 结晶晶粒。

(a)—200 °C;(b)—250 °C;(c)—300 °C;(d)—350 °C₀

图 3 为不同退火温度下 WO₃薄膜 XRD 图。从 图 3 可见, XRD 图谱上除了 FTO 的衍射峰外,并未 有其他明显的衍射峰,当退火温度为 350 ℃时在 23.10°、23.58°和 24.32°处有明显的衍射峰。表明, 在温度 200—350 ℃的退火过程中,薄膜逐渐由非晶 态转变为结晶态。当退火温度低于 300 ℃时, WO₃ 薄膜均为非晶态;当退火温度为 350 ℃时,观察到薄 膜的结构参数与 JCPDS(No. 83-0950)^[11]的数据有 很好的一致性,说明其为单斜晶结构。由于 WO₃的 单斜晶体结构并不具备良好的电化学性能^[12-13],随 着退火温度升高薄膜的致密度也逐渐增加。一般而 言,薄膜结构疏松多孔,在电化学反应过程中能提供

Figure 3 XRD patterns of WO₃ films at different annealing temperatures

更多的活性位点,从而会获得更好的着色效果及反应可逆性^[14],因此通常致密的结构不利于电致变色性能。综上所述,薄膜的电致变色性能随着温度升高而下降。

2.2 电致变色性能分析

电致变色测试使用的电解质溶液为1 mol·L⁻¹ 的AlCl_a,溶液呈弱酸性。所有样品均在同样的外加 电压条件下测试,即在-0.5V下着色、在+0.6V 下褪色。图4为不同退火温度下WO3薄膜在初始、 着色、漂白状态的透过率曲线。从图4(a)可见, 200 ℃退火温度的 WO₃ 薄膜光学对比度最大,在 633 nm 处达到 79%。从图 4(b-d) 可见, 在 250、 300 和 350 ℃的退火温度下, WO3薄膜在 633 nm 处 的光学对比度分别为 39.1%、23.7% 和 46.1%。一 般情况下,当施加的着色电压大小、时间相同时,薄 膜的颜色深浅代表着光学对比度的大小,而光学对 比度取决于薄膜与电解质的接触面积及薄膜结构的 致密程度。由于所有样品的表面平整度都十分均 匀,因而着色主要取决于薄膜结构。随着退火温度 的升高,薄膜结构由非晶相→半结晶相→结晶相。 当退火温度200-300℃时光学对比度逐渐减小,而 350℃时薄膜处于结晶态,因细微的晶界增大了薄 膜与电解质的接触面积,形成了更多的电化学活性 反应位点,因此颜色更佳,光学对比度稍有增加。从 图4还可见,只有200℃退火的薄膜能够在60s内恢 复到初始状态透过率,而其他3个薄膜均无法恢复到 初始状态透过率,并且随着温度升高,漂白状态的透 过率偏移初始状态透过率的程度越大。这是由于随 着薄膜的结晶度增加,着色过程中嵌入薄膜的Al³⁺离 子难以脱出,由于薄膜中含有一定量的非WO₃化合物,因而使得薄膜始终呈现蓝色。而200℃的薄膜处于一个完全的非晶态,嵌入的离子在外加正向偏压下 很容易回到电解质溶液中,从而恢复透明状态。

采用 Sol-gel 法制备 WO₃薄膜时,会在薄膜内引 入一定量的结构水,而这些结构水的存在会降低离 子的扩散能全,改善离子扩散动力学,从而促进更为 有效的离子转移,改善电致变色离子的吸附和插入 能力,提高材料的电致变色性能^[12,15-16]。另外,随着 退火温度的升高,薄膜结晶度增加,薄膜中结构水丧 失。因此,薄膜电致变色性能随温度升高而逐渐降 低。非晶氧化钨的着色机制有别于晶态的氧化钨, 其着色更多的是因为极化子的吸收机制。当电子和 离子被注入或提取时,氧化钨的电子结构被改变,电 子的插入使低能级带被填充。多余的电子和晶格极 化可以通过吸收光子从一个钨位点跳到另一个钨位 点,因此费米能级向上移动。多余的电子填充了氧 化钨的 t2g 带,氧化钨的光学特性从透明状态转变 为吸收状态[17-19]。

为考察4个退火温度薄膜的循环稳定性,在电 压±0.3 V、各持续30 s条件下进行了实验测试,结 果如图5所示。从图5可见,200 ℃退火温度的薄膜 具有最佳的循环稳定性,其光学对比度在6000 s的 时间内(即100个循环下)无明显变化,而其他3个薄 膜的光学对比度均有不同程度的增加。在电致变色 测试循环过程中,非晶态结构能够更好适应离子频 繁嵌入和脱出带来的体积变化,而晶态结构的薄膜 随着离子嵌入脱出带来的应力变化会产生裂纹,而 这些裂纹在一定程度上增加了与电解质的接触面 积,从而产生更好的着色效果,但是这样的裂纹对于 薄膜的主体结构稳定是不利的,随着循环次数的增 加很容易使薄膜从导电基底上脱落失效^[20]。

Figure 5 Cyclic stability of WO₃ films with different annealing temperatures

3 结论

采用溶胶-凝胶法制备了WO₃薄膜,研究了不同退火温度对薄膜的形貌及结构的影响,并对薄膜进行电致变色性能测试。结果表明:薄膜的结晶受温度影响显著,退火温度越高薄膜结构越致密,并且薄膜在退火温度350℃下形成单斜晶相。薄膜的电致变色性能,受其结构影响明显。当退火温度为200℃时,薄膜呈现高度的非晶态且结构疏松,这有利于反应过程中离子的嵌入和脱出,同时有着最佳的循环稳定性,在±0.3 V电压下可以稳定循环100次,光学对比度始终维持在40%以上。另外,疏松结构也意味着大的反应接触面积,从而有着更好的着色效果,该薄膜在-0.5 V电压下,在633nm处的光学对比度可以达到79%,而其他温度退火的薄膜电致变色性能均不突出。

参考文献:

- [1] 中国建筑能耗研究报告 2020[J]. 建筑节能(中英文), 2021, 49(2): 1-6.
- [2] GRANQVIST CLAES G. Electrochromics and thermochromics: Towards a new paradigm for energy efficient buildings [J]. Materials Today: Proceedings, 2016(3): 2-11.
- [3] PURUSHOTHAMAN K K, MURALIDHARAN G, VIJAYAKUMAR S. Sol-gel coated WO₃ thin films based complementary electrochromic smart windows

[J]. Materials Letters, 2021, 296: 129881.

- [4] NGUYEN T V, HUYNH K A, LE Q V, et al. Highly stable electrochromic cells based on amorphous tungsten oxides prepared using a solution-annealing proces [J]. International Journal of Energy Research, 2021, 45(5): 8061-8072.
- [5] KIM H J, SON M H, AHN S H, et al. Comparison of electrochromic characteristics of electrochromic device upon various sintering methods of sol-gel based WO₃ electrode [J]. Current Applied Physics, 2020, 20(6): 782-787.
- [6] 陈品鸿,许良记,李定帆,等.溶胶-凝胶法制备 Ag/ TiO₂纳米薄膜及其陶瓷表面抗菌性能研究[J].材料研 究与应用,2023,17(1):142-148.
- [7] KRÜGER L U, CHOLANT C M, RODRIGUES M
 P, et al. Photochromism of doped and undoped WO₃ solgel films: Determination and analysis of optical constants
 [J]. Optical Materials, 2022, 128: 112357.
- [8] 林剑荣,杜永权,梁瑞斌,等.氧化铟基透明导电薄膜的研究进展[J].材料研究与应用,2022,16(3): 353-361.
- [9] 张旭, 宁洪龙, 邹文昕, 等. 溶液法制备透明 SnO₂薄 膜微观结构和光电性能研究[J]. 材料研究与应用, 2022, 16(3): 369-375.
- [10] IŞIK D, AK M, DURUCAN C. Structural. electrochemical and optical comparisons of tungsten oxide coatings derived from tungsten powder-based sols
 [J]. Thin Solid Films, 2009, 518(1): 104-111.

- [11] SUN X L, CAO H T, LIU Z M, et al. Influence of annealing temperature on microstructure and optical properties of sol-gel derived tungsten oxide films [J]. Applied Surface Science, 2009, 255(20): 8629-8633.
- [12] DEEPA M, SAXENA T K, SINGH D P, et al. Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties [J]. Electrochimica Acta, 2006, 51(10): 1974-1989.
- [13] WU C L, WANG C K, LIN C K, et al. Electrochromic properties of nanostructured tungsten oxide films prepared by surfactant-assisted sol-gel process[J]. Surface and Coatings Technology, 2013, 231: 403-407.
- [14] PARK S, THUY D T, SARWAR S, et al. Synergistic effects of Ti-doping induced porous networks on electrochromic performance of WO₃ films
 [J]. Journal of Materials Chemistry C, 2020, 8(48): 17245-17253.
- [15] LEFTHERIOTIS G, PAPAEFTHIMIOU S, YIANOULIS P, et al. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO₃ films [J]. Thin Solid Films, 2001,

384(2): 298-306.

- [16] WANG Z, GONG W B, WANG X Y, et al. Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-topseudocapacitor transition [J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33917-33925.
- [17] THONGPAN W, KUMPIKA T, TIPPO P, et al. Enhancement reversibility and electrochromic efficiency of porous WO₃ films by sparking method under electric/ magnetic field [J]. Materials Letters, 2022, 329: 133171.
- [18] MAK A K, TUNA Ö, SEZGIN N H, et al. Effect of Al doping on the electrochromic properties of WO₃ thin films[J]. Thin Solid Films, 2022, 751: 139241.
- [19] GUTPA J, SHAIK H, KUMAR K, et al. PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO₃) thin films: A review [J]. Materials Science in Semiconductor Processing, 2022, 143: 106534.
- [20] SHAO P P, HUANG S Y, LI B W, et al. Eradicating β -trap induced bleached-state degradation in amorphous TiO₂ electrochromic films[J]. Materials Today Physics, 2023, 30: 100958.

Effect of Annealing Temperature on the Electrochromic Properties of Tungsten Oxide Films by Sol-Gel Method

LIAO Qingdong

(School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China)

Abstract: Electrochromism is a phenomenon in which the optical properties of a material are altered due to the embedding of ions in an electrolyte when the material is subjected to an applied electric field. This phenomenon can be utilised in a variety of scenarios, including architectural insulation, decoration and information display. Tungsten oxide (WO₃), a widely researched mechanism-free electrochromic material, still exhibits high costs when used in large-scale mechanism-free electrochromic films in photothermal modulation scenarios. This is due to the stringent preparation process requirements and the costly price of the transparent conductive substrate, despite the material being widely available in our country. In this study, tungsten oxide (WO₃) thin films were prepared by sol-gel method, and the crystalline and amorphous states were prepared by changing the annealing temperature, and the electrochromic properties were tested. The experimental results showed that the films gradually changed from amorphous to crystalline state and the internal structure of the films gradually densified with the increase of annealing temperature. At four annealing temperatures (200 °C, 250 °C, 300 °C, 350 °C), the films annealed at 200 °C showed the best electrochromic properties with good reversibility. The optical contrast at 633 nm was 79% in 1 mol·L⁻¹ AlCl₃ solution with -0.5 V applied. The other annealing temperature of the films, due to the internal structure of the films tends to be dense, in the application of forward voltage, the embedded ions can not be de-embedded in a short period of time, making it difficult to return to the initial state of the optical properties of the films, the colouring fading response speed decreased; also led to the film in the state of the colouring of the optical contrast has a varying degree of degradation. One of the samples annealed at 350 °C showed differentiation in optical contrast, which may be attributed to the crystallization of the film, with fine grain boundaries providing more reaction sites. This study provides a simple and low-cost method to prepare WO₃ thin films and investigates the influence of the electrochromic properties of the films at different sub-treatment temperatures for large area application of electrochromic materials.

Keywords:tungsten oxide film;electrochromic;sol-gel;AlCl3;amorphous films;spin coat;annealing temperature;optical contrast