材料研究与应用 2023,17(2):360-366 Materials Research and Application

DOI:10.20038/j.cnki.mra.2023.000222

基于铱配合物的铜离子(II)及pH双功能荧光探针研究

招杰成,谢梦婷,麦旭峰,于会娟*

(广东工业大学轻工化工学院,广东广州 510006)

摘要: 铜是人体必须的一种微量元素, 铜离子的实时快速检测对于环境监测、疾病诊断具有重要意义。将salen配体与金属铱(Ⅲ)相结合合成了一种双功能荧光探针Ir-ppy-pbm,并利用紫外吸收光谱、荧光光谱、激光共聚焦成像等技术研究了其对铜离子(II)及pH的检测效果。结果表明,Ir-ppy-pbm可选择性地与铜离子(II)结合,结合后表现出灵敏的荧光 on-off现象,检测限度达58 nmol·L⁻¹,该值远低于世界卫生组织建议的饮用水中铜离子(II)允许含量(约30 µmol·L⁻¹)及人体血液中的铜离子(II)水平(1.7—3.9 µmol·L⁻¹)。激光共聚焦显微成像的结果显示:Ir-ppy-pbm可穿透细胞膜进入细胞核中,并可对细胞核内的铜离子(II)水平进行监测; Ir-ppy-pbm还表现出灵敏的pH荧光响应效果,其在590 nm处的荧光信号可用于较宽范围内的pH检测,而525和590 nm处的荧光强度比值则可用作强酸条件下的比例型荧光 pH探针。

关键词:荧光探针;金属铱(Ⅲ)配合物;离子检测;铜离子;pH探针

中图分类号:O657.61 文献标志码: A 文章编号:1673-9981(2023)02-0360-07

引文格式:招杰成,谢梦婷,麦旭峰,等.基于铱配合物的铜离子(II)及pH双功能荧光探针研究[J].材料研究与应用,2023,17 (2):360-366.

ZHAO Jiecheng, XIE Mengting, MAI Xufeng, et al. Study of Fluorescent Probe for Copper Ion(II) and pH Detection Based on Iridium Complex[J]. Materials Research and Application, 2023, 17(2): 360-366.

铜离子是人体必须的一种微量元素,在许多重要的生理过程中,如能量产生、抗氧化、信号传导、神经递质合成、表观遗传修饰等起着重要作用^[1-7]。铜离子的代谢失衡则会导致严重的疾病,如癌症、阿尔茨海默症、帕金森症、亨廷顿症、门克斯和威尔逊氏病等^[8-14]。由于在工业、农业、医药化工等行业中铜离子被广泛地应用,其已经成为了环境中的重要污染物之一。一些组织设定了铜离子的最大允许值和每日摄取量限制,如世界卫生组织(WHO)要求饮用水中的铜离子含量不得高于2.0 ppm(约30 μ mol·L⁻¹)、美国环境保护署(EPA)则设定为1.3 ppm(约20 μ mol·L⁻¹),世界卫生组织还建议成人每日的铜离子摄取量不得超过12 mg^[15-16]。而一个健康成年人血清中的铜离子浓度在1.7—3.9 μ mol·L⁻¹之间^[17-18]。所以,发展可以快速、灵敏、便捷地检测环

境和生物样本中铜离子浓度的方法是非常有必 要的。

传统的铜离子检测技术包括原子吸收光谱、原 子发射光谱、等离子耦合质谱及电化学方法,但这些 方法存在仪器昂贵、样品处理步骤复杂、操作过程繁 琐等缺点,因而应用受到限制^[19-23]。与传统方法相 比,荧光检测法则具有快速、灵敏、便捷、易操作的优 点,因此许多铜离子荧光探针方法被报道^[24-26]。在 以往的研究中,报道了基于 salen 配体的铜离子荧光 探针 pimi。pimi可以快速、灵敏地检测铜离子,并且 检测限度达纳摩尔级,但其较短的发射波长限制了 应用^[25]。将 salen 配体与金属铱(Ⅲ)相结合,合成一 种基于金属铱(Ⅲ)配合物的铜离子及 pH 双功能荧 光探针 Ir-ppy-pbm。 Ir-ppy-pbm 在水溶液中发射出 明亮的绿色荧光,与铜离子结合后显示出灵敏的

收稿日期:2022-03-29

基金项目:国家自然科学基金项目(21907016)

作者简介:招杰成,硕士研究生,研究方向为金属配合物荧光探针设计及合成,E-mail:987128194@qq.com。 通信作者:于会娟,博士,副教授,研究方向为光学探针、生物传感器,E-mail:xiaoheiyu79@gdut.edu.cn。

on-off变化,检测限度为58 nmol·L⁻¹,远低于人体血 清中的铜离子浓度和WHO建议的饮用水允许浓 度。Ir-ppy-pbm能够穿透细胞膜,对细胞内铜离子 水平变化进行监测。同时Ir-ppy-pbm还表现出灵敏 的pH荧光响应效果,可以用作宽范围内单荧光pH 荧光探针和强酸条件下的比例型pH荧光探针。

1 实验部分

1.1 试剂及仪器

实验所用试剂:5,6-二胺基-1,10-邻菲罗啉, 购买自阿拉丁试剂公司;三氯化铱、苯基吡啶、 咪唑-2-甲醛,购自广州化学试剂厂,均为分析纯。 [Ir(ppy)₂]₂Cl₂参考文献[27]中的方法进行合成。

实验所用仪器:布鲁克 AVANCE III 400M 核磁共振波谱仪用于核磁氢谱、碳谱的测试、岛津2020液相色谱质谱联用仪用于质谱测试、紫外吸收光谱通过 Shimadzu 2007紫外可见吸收光谱仪测试、荧光光谱通过 HORIBA Fluorolog-3荧光光谱仪测试、蔡司 LSM 800 激光共聚焦显微镜用于细胞成像。

1.2 实验方法

1.2.1 配体2-pbm的制备

首先,将咪唑-2-甲醛(0.23g或2.4 mmol)溶解 于5mL热的无水乙醇中,再缓慢滴入溶有5,6-二氨 基-1,10-邻菲罗啉(0.628g或3 mmol)的无水乙醇 溶液中,滴加时间控制在0.5h内。然后,在78℃下 进行混合回流6h并有浅黄色固体生成,然后将反应 液冷却并收集沉淀,用无水乙醇和无水乙醚洗涤固 体,在真空下干燥12h,干燥温度40℃。最后,获得 的配体2-pbm为浅黄色粉末状,其产率为76%。 ESI-MS(MeCN):[M+H]⁺=287。

1.2.2 Ir-ppy-pbm的制备与表征

将 [Ir (ppy)₂]₂Cl₂(0.05 g 或 0.04 mmol)和 2pbm(0.046 g 或 0.1 mmol)充分混合于含有 4 mL 的 甲醇和 4 mL 的三氯甲烷的混合溶剂中,在氮气保护 气氛中 65 ℃下反应 6 h,反应液呈黄色澄清溶液。 将反应液冷却后,利用旋转蒸发仪除去剩余溶剂,得 黄棕色固体产物。将产物溶解于少量甲醇中,通过 中性氧化铝(0.074 mm)柱层析进行分离纯化,然后 选用体积比为 V(二氯甲烷):V(甲醇)=1:4的溶液 进行淋洗,收集主要黄色带,减压除去溶剂,最终产 品 Ir-ppy-pbm 为黄色晶体,产率为 78%。¹H NMR (400 MHz, d_6 -DMSO) δ (ppm) : 8.91 (s, 2H), 8.88-8.81 (d, 2H), 8.61-8.60 (d, J=2.0 Hz, 2H), 8.21-8.19 (d, J=4.0 Hz, 2H), 8.12-8.10 (d, J=4.0 Hz, 2H), 7.99-7.98 (d, J=2.0 Hz, 2H), 7.15-7.13 (t, 3H), 7.07-7.05 (m, 4H), 6.83-6.81 (t, J₁=J₂=2.0 Hz, 2H), 6.73-6.71 (t, J₁=J₂=2.0 Hz, 2H), 6.38-6.36 (d, J=4.0 Hz, 2H), 6.18-6.17 (d, J=2.0 Hz, 2H), 6.12 (s, 1H) $_{\circ}$ ESI-MS:[M-2H]=787.19 $_{\circ}$

1.2.3 储备液的制备

母液的制备。将适量的 Ir-ppy-pbm 固体溶解在 DMSO(二甲基亚砜)溶剂中,制备浓度为 10 mmol· L⁻¹的母液,将其存放于螺口玻璃瓶中并低温冷冻 保存。称取不同金属离子(Li⁺、Na⁺、K⁺、Mg²⁺、 Ca²⁺、Ba²⁺、Co²⁺、Cd²⁺、Hg²⁺、Mn²⁺、Zn²⁺、Fe²⁺、 Pb²⁺、Cu²⁺)的化合物并用超纯水溶解,配制成浓度 为 20—100 mmol·L⁻¹的离子母液,所有离子母液为 保证效果需现配现用。

Britton-Robinson 缓 冲 液 配 制 。 量 取 适 量 的 H_3BO_3 、 H_3PO_4 和 CH_3COOH ,用超纯水溶解,最终浓 度均为 40 mmol·L⁻¹并在常温下保存,用于 pH 滴定 中 Ir-ppy-pbm 溶液的制备。

1.2.4 细胞成像

将 PC12 细胞以 4×10^4 的密度接种在 24 孔板 中, 孵育 24 h后将培养基换成含有 Ir-ppy-pbm 的新 鲜培养基,继续在 CO₂培养箱中孵育 6 h, 再用 PBS 缓冲液(1.5 mmol·L⁻¹的 Na₂HPO₄、0.5 mmol·L⁻¹的 NaH₂PO₄、0.25 mmol·L⁻¹的 Na₂H₂EDTA, pH= 7.2)洗涤 3次, 然后用含有 Cu²⁺的培养基继续孵育 2 h, 再用 PBS 洗涤 3 次后, 置于共聚焦显微镜下 成像。

2 结果与讨论

2.1 合成与表征

配体通过咪唑 2-甲醛与 5,6-二氨基-1,10-邻菲 罗啉在乙醇溶液中通过醛胺缩合反应制备,配合物 利用[Ir(ppy)₂]₂Cl₂前体与配体在乙醇-二氯甲烷混 合溶剂中合成,并利用质谱、H-NMR进行表征,其 结果如图 1 所示。从图 1 可见:Ir-ppy-pbm 在 200— 500 nm 波段有较强的吸收,在 280 nm 处表现出最大 吸收,属于配体间的 $\pi-\pi*$ 电子跃迁,而 350 nm 处吸 收峰归属于金属到配体的 MLCT 跃迁;同时,在 525 nm 处表现出较强发射,发射出绿色荧光。

2023

Figure 1 The chemical structure, absorption and fluorescent spectrum of Ir-ppypbm(λ_{ex} =350 nm)

2.2 铜离子荧光响应

图 2 为不同浓度 $Cu^{2+}(0-25\mu mol \cdot L^{-1})$ 下 Irppy-pbm 荧光光谱图及荧光强度图,其中 Ir-ppy-pbm 的浓度为 5 μ mol·L⁻¹、 Cu^{2+} 浓度为 0-25 μ mol·L⁻¹。 从图 2 可见, Ir-ppy-pbm 对 Cu^{2+} 具有灵敏的荧光响 应效果,随着 Cu^{2+} 浓度的增加 Ir-ppy-pbm 的荧光 强度逐渐降低,当 Cu^{2+} 浓度增加到 25 μ mol·L⁻¹时 Ir-ppy-pbm荧光强度基本保持不变,此时荧光强度 淬灭 60%。

Figure 2 Changes in fluorescence spectra and fluorescence intensity of Ir-py-pbm at different concentrations of Cu²⁺

利用滴定曲线通过 $3\delta/k$ 法计算出 Ir-ppy-pbm 对 Cu²⁺的检测限度为 58 nmol·L⁻¹,这一数值显著低 于世界卫生组织规定的饮用水最大铜离子允许含量 (0—30 μ mol·L⁻¹)和人体血液铜离子含量(1.7— 3.9 μ mol·L⁻¹),说明 Ir-ppy-pbm 对 Cu²⁺响应具有较 高的灵敏度,可以用于环境及生物样本中 Cu²⁺的 检测。

2.3 选择性测试

良好的选择性是金属离子荧光探针的首要特征,随后测试Ir-ppy-pbm对其他金属离子的响应效果

以检验其选择性,其中Ir-ppy-pbm浓度为 5 μ mol·L⁻¹、 不同金属离子浓度为 50 μ mol·L⁻¹,结果如图 3 所 示。从图 3 可见:加入 10 倍摩尔浓度不同金属离子 (如Li⁺、Na⁺、K⁺、Mg²⁺、Ca²⁺、Ba²⁺、Co²⁺、Cd²⁺、 Hg²⁺、Mn²⁺、Zn²⁺、Fe²⁺、Pb²⁺)后,Ir-ppy-pbm荧光没 有明显的变化;当加入 Cu²⁺时,Ir-ppy-pbm荧光被显 著淬灭;在紫外光照射下,Ir-ppy-pbm对于 Cu²⁺显示 出裸眼可视的荧光颜色变化,而其他离子的加入无 明显现象。结果表明,Ir-ppy-pbm 对于 Cu²⁺具有良 好的选择性。

- 图 3 不同金属离子存在下的 lr-ppy-pbm 的荧光光谱谱图及 365 nm 紫外光照射下 的 lr-ppy-pbm 荧光颜色变化
- Figure 3 Fluorescence spectra of Ir-ppy-pbm in the absence and presence of 10 equivalents of various metal ions in aqueous solution, and fluorescence color change of Ir-ppy-pbm in absence and presence of various metal ions e under ultraviolet light (365 nm)

2.4 抗干扰能力

由于人体内部生物微环境复杂,许多金属离子 都可能与胺类配体进行配位,对铜离子检测造成干 扰。为进一步探究其他金属离子对铜离子的识别是 否存在干扰,进行了竞争性实验。在含 Ir-ppy-pbm 的溶液(浓度5 μmol·L⁻¹)中先分别加入了10倍摩尔 浓度的常见金属离子(浓度 20 μmol·L⁻¹),随后再加 人 Cu²⁺,然后对 Ir-ppy-pbm 的抗干扰能力进行研究,实验结果如图4所示。从图4可见:单独加入其他金属离子时,Ir-ppy-pbm 的荧光强度无明显改变; 当向 Ir-ppy-pbm 和其他离子的混合体系加入铜离子时,Ir-ppy-pbm 的荧光被显著淬灭,其淬灭强度与单独加入 Cu²⁺时基本一致,说明其他离子的存在对于 Ir-ppy-pbm 识别 Cu²⁺没有干扰,进一步说明了 Irppy-pbm 对于 Cu²⁺具有良好的特异选择性。

metal ions and in the absence/presence of Cu²⁺ in aqueous solution

2.5 Ir-ppy-pbm对pH的响应

对 Ir-ppy-pbm 的荧光随 pH 的变化进行了测试, 以检验其 pH 响应效果,结果如图 5 所示。从图 5 可 见, Ir-ppy-pbm 对 pH 表现出灵敏的双荧光响应效 果。当pH为1.68时,Ir-ppy-pbm在590 nm处发射 出强烈的荧光,而在525 nm处的发射峰则较弱;随 着pH不断增大,在590 nm处的荧光强度显著降低; 在525 nm处的荧光强度则呈现先增加后减小的趋 pH=1.8-3.5范围内 I525/I590 与 pH 呈线性关系,说

明 Ir-ppy-pbm 除可以在 1.68—11.10 宽范围内用作 单荧光 pH 荧光探针外,还可以用作强酸条件下的 比率型 pH 荧光探针。

Figure 5 Fluorescence spectra change of Ir-ppy-pbm with the increase of pH, and variation of the ratio of fluorescence intensity at 525 nm to 590 nm with pH

2.6 细胞成像

由于 Ir-ppy-pbm 在溶液测试中表现出较好的效果,进一步测试了其活细胞成像效果,观察其是否可用于细胞内铜离子浓度的实时检测,结果如图 6 所示。从图 6 可见:在[Ir-ppy-pbm]=10 μ mol·L⁻¹、 λ_{ex} =405 nm条件下,当将细胞单独与 Ir-ppy-pbm 进

行孵育时,细胞显示出明亮的绿色荧光,且绿色荧光 信号与细胞核染料DAPI的蓝色荧光信号共定位良 好,说明Ir-ppy-pbm具有良好的细胞穿透性,可穿过 细胞膜进入细胞核中;加入Cu²⁺后,Ir-ppy-pbm荧光 被显著淬灭,随着Cu²⁺浓度的增加,荧光淬灭越明 显,直至荧光信号几乎观察不到,说明Ir-ppy-pbm可

图 6 Ir-ppy-pbm 荧光检测 PC12 细胞内 Cu²⁺浓度变化的荧光成像

Figure 6 Fluorescence imaging of Ir-ppy-pbm in PC12 cells in the presence of increasing amount of Cu2+ions

用于细胞核的成像及核内Cu²水平的监测。

3 结论

设计合成了一种含 salen 配体的金属铱配合物 Ir-ppy-pbm,其可选择性地与铜离子(II)结合,结合 后表现出灵敏的荧光 on-off 现象。荧光滴定的结 果显示,Ir-ppy-pbm 对铜离子(II)的检测限度达 58 nmol·L⁻¹,远低于世界卫生组织建议的饮用水最 高允许含量以及人体血液中的铜离子(II)水平。激 光共聚焦显微成像显示,Ir-ppy-pbm可顺利穿透细 胞膜富集在细胞核中,并可对细胞内铜离子(II)水 平进行监测。同时,Ir-ppy-pbm还表现出灵敏的双 荧光 pH响应效果,其在 590 nm 处的荧光强度随 pH 的增强而不断降低,而在 525 nm 处的荧光强度则随 pH 的增大先增加后减弱,590 nm 和 525 nm 的荧光 强度比值在强酸性环境与 pH 呈线性关系,说明 Irppy-pbm 还可以用作强酸性条件下比例型 pH 荧光 成像探针。

参考文献:

- [1]向思佳,刘扬中.微量元素铜与人体生理功能和疾病[J].大学化学,2022,37(5):2107128-2107135.
- [2] FERGUSON-MILLER S, BABCOCK G T. Heme/ copper terminal oxidases [J]. Chem Rev, 1996, 96(7): 2889-2908.
- [3] ISHIDA S, ANDREUX P, POITRY-YAMATE C, et al. Hanahan, bioavailable copper modulates oxidative phosphorylation and growth of tumors [J]. Proc Natl Acad Sci, 2013, 110(48) : 19507-19512.
- [4] REDDI A R, CULOTTA V C. SOD1 integrates signals from oxygen and glucose to repress respiration [J]. Cell, 2013, 152(1-2): 224-235.
- [5] KOHEN A, KLINMAN J P. Enzyme catalysis: Beyond classical paradigms [J]. Acc Chem Res, 1998, 31(7):397-404.
- [6] PEÑA M M, LEE J, THIELE D J. A delicate balance: Homeostatic control of copper uptake and distribution [J]. J Nutr, 1999, 129(7):1251-1260.
- [7] BRADY D C, CROWE M S, TURSKI M L, et al. Counter, copper is required for oncogenic BRAF signalling and tumorigenesis [J]. Nature, 2014, 509 (7501): 492-496.
- [8] BARNHAM K J, BUSH A I. Biological metals and metal-targeting compounds in major neurodegenerative diseases [J]. Chem Soc Rev, 2014, 43 (19) : 6727-6749.
- [9] MADSEN E, GITLIN J D. Copper and iron disorders of the brain [J]. Annu Rev Neurosci, 2007, 30: 317-337.

- [10] GREENOUGH M A, CAMAKARIS J, BUSH A I. Metal dyshomeostasis and oxidative stress in Alzheimer's disease [J]. Neurochem Int, 2013, 62(5): 540-555.
- [11] KALER S G. ATP7A-related copper transport diseases-emerging concepts and future trends [J]. Nat Rev Neurol, 2011, 7(1):15-29.
- BANDMANN O, WEISS K H, KALER S G.
 Wilson's disease and other neurological copper disorders
 [J]. Lancet Neurol, 2015, 14(1):103-113.
- [13] BARNHAM K J, MASTERS C L, BUSH A I.
 Neurodegenerative diseases and oxidative stress [J].
 Nat Rev Drug Discov, 2004, 3(3):205-214.
- [14] GEORGOPOULOS P G, ROY A, YONONE-LIOY M J, et al. Environmental copper: Its dynamics and human exposure issues [J]. J Toxicol Env Heal B, 2001, 4(4): 341-394.
- [15] Environmental Protection Agency (EPA). Drinkingwater regulations, safe drinking water act (SDWA)[S/ OL]. https://www.epa.gov/laws-regulations.
- [16] WHO. WHO guideline values for chemicals that are of health significance in drinking water: 3 ed[S]. Geneva: Guidelines for Drinking Water Quality, 2008.
- [17] LEE S, BARIN G, ACKERMAN C M, et al. Copper capture in a thioether-functionalized porous polymer applied to the detection of wilson's disease [J]. J Am Chem Soc, 2016, 138(24): 7603-7609.
- [18] MERLE U, SCHAEFER M, FERENCI P, et al. Clinical presentation, diagnosis and long-term outcome of Wilson's disease: A cohort study [J]. Gut, 2007, 56(1):115-120.
- [19] GONZÁLES A P, FIRMINO M A, NOMURA C S, et al. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry [J]. Anal Chim Acta, 2009, 636 (2): 198-204.
- [20] BECKER J S, ZORIY M V, PICKHARDT C, et al. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry [J]. Anal Chem, 2005, 77(10) :3208-3216.
- [21] COTRUVO JR J A, ARON A T, RAMOS-TORRES K M, et al. Synthetic fluorescent probes for studying copper in biological systems [J]. Chem Soc Rev, 2015, 44(13) : 4400-4414.
- [22] JIANG N, CHANG X, ZHENG H, et al. Selective solid-phase extraction of nickel (II) using a surfaceimprinted silica gel sorbent [J]. Anal Chim Acta, 2006, 577(2): 225-231.

- [23] POURMAND N, SANAGI M M, NAIM A A, et al. Dispersive micro-solid phase extraction method using newly prepared poly (methyl methacrylate) grafted agarose combined with ICP-MS for the simultaneous determination of Cd, Ni, Cu and Zn in vegetable and natural water samples [J]. Anal Methods, 2015, 7 (7):3215-3223.
- [24] UDHAYAKUMARI D, NAHA S, VELMATHI S.
 Colorimetric and fluorescent chemosensors for Cu²⁺. A comprehensive review from the years 2013-15 [J].
 Anal Methods, 2017, 9(4):552-578.
- [25] YU H J, ZHAO W, ZHOU Y, et al. Salen-based

bifunctional chemosensor for copper (II) ions: Inhibition of copper-induced amyloid- β aggregation [J]. Anal Chim Acta, 2020, 1097:144-152.

- [26] AYDIN Z, YAN B, WEI Y, et al. A novel near-infrared turn-on and ratiometric fluorescent probe capable of copper(II) ion determination in living cells
 [J]. Chem Commun, 2020, 56(45): 6043-6046.
- [27] MA X, LIANG J, BAI F, et al. New mixed-CN ligand tris-cyclometalated Ir(III) complexes for highlyefficient green organic light-emitting diodes with low efficiency roll-off [J]. Eur J Inorg Chem, 2018, 2018 (42):4614-4621.

Study of Fluorescent Probe for Copper Ion(II) and pH Detection Based on Iridium Complex

ZHAO Jiecheng, XIE Mengting, MAI Xufeng, YU HuiJuan*

(School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China)

Abstract: Copper is an essential trace element for the human body. Rapid and real-time detection of copper ions is of great significance for environmental monitoring and disease diagnosis. In this paper, a bifunctional fluorescent probe Ir-ppy-pbm was synthesized by combining the salen ligands with metal iridium (Π), and its effect on copper ions(II) and pH detection were studied using ultraviolet absorption spectroscopy, fluorescence spectroscopy, laser confocal imaging and other techniques. The results show that Ir-ppy-pbm can selectively combine with copper ions (II) and shows a sensitive fluorescence on-off phenomenon after combination, with a detection limit of 58 nmol·L⁻¹, which is much lower than the allowable content of copper ion(II) in drinking water recommended by the World Health Organization (30 µmol·L⁻¹) and copper ion levels in human blood (1.7—3.9 µmol·L⁻¹). The results of cell imaging showed that Ir-ppy-pbm could penetrate the cell membrane, accumulating in the nucleus, and monitoring the copper ion level in the cell. Meanwhile, Ir-ppy-pbm exhibits a sensitive fluorescence signal at 590 nm can be used for pH detection in a wide range, while the ratio of fluorescence intensity at 525 nm to 590 nm can be used as a ratiometric pH fluorescent probe under strong acid conditions. **Keywords**; fluorescent probe; iridium (Π) complex; ions detection; copper ion; pH probe

(学术编辑:宋琛)