DOI:10.20038/j.cnki.mra.2022.000417

物理气相沉积高熵合金涂层/薄膜性能研究进展

闫巨擘^{1,2},赖振国²,谭心¹,文欣宇^{2,3},张斌²

(1. 内蒙古科技大学机械工程学院,内蒙古包头014010; 2. 中国科学院兰州化学物理所材料磨损与防护重点实验室,甘肃兰州730000; 3. 兰州交通大学化学与生物工程学院,甘肃兰州730070)

摘要:高熵合金多主元素混合会导致高混合熵、严重的晶格畸变、缓慢扩散效应及鸡尾酒效应等,因此表现 出迥异的特性,如具有优异的力学性能、热稳定性、耐蚀性、耐磨性、抗氧化性、抗压强度等。将高熵合金的 设计理念同表面涂层/薄膜技术相结合制备高熵合金涂层/薄膜,这种薄膜通常展现出同块体高熵合金的 相似性能,甚至优于块体高熵合金,在诸多领域具有巨大的应用潜力。重点总结了典型高熵合金涂层/薄 膜的的硬度、弹性模量、热稳定性、耐腐蚀性能及耐磨性能的研究进展,并展现了提高高熵合金涂层/薄膜 的性能方法及其机理,最后对高熵合金涂层/薄膜的光能吸收涂层、辐射耐受性、生物腐蚀、电子、耐磨性等 未来发展方向进行了一定的展望。

关键词:高熵合金;涂层与薄膜;硬度;弹性模量;热稳定性;耐腐蚀性;耐磨性
中图分类号:TB443
文献标志码:A
文章编号:1673-9981(2022)04-0626-11

引文格式:闫巨擘,赖振国,谭心,等.物理气相沉积高熵合金涂层/薄膜性能研究进展[J].材料研究与应用,2022,16(4): 626-636.

YAN Jubo, LAI Zhenguo, TAN Xin, et al. Research Progress on Properties of High Entropy Alloy Coatings/Films [J]. Materials Research and Application, 2022, 16(4):626-636.

合金根据其在随机溶液状态下的混合熵大致可 以分为3类,含1种或2种主要元素的低熵合金,含 有2-4种主要元素的中熵合金及至少含有5种主 要元素的高熵合金(HEA)^[1-2]。Yeh等首次提出高 熵合金^[3]是含有5个或5个以上等摩尔或近似摩尔 比的主元素的合金体系,每个元素的原子百分率为 5%-35%^[4]。足够高的混合熵可以确保固溶相或 非晶相的形成^[5],高熵合金意味着在合金内部是十 分混乱的,其为无序结构。

根据高熵合金的定义和以往的研究^[6],高熵合 金的多主元素混合会导致严重的晶格畸变、缓慢扩 散效应、鸡尾酒效应和高混合熵^[7.8],这些现象的存 在使高熵合金比传统合金具有更高的硬度、弹性模 量、热稳定性、耐蚀性能、耐磨性能^[9],但是由于高熵 合金中通常含有钴、铬、银、镍、铌、钒等元素使得高 熵合金的成本十分高昂^[10],无法进行大规模的生产 与应用。而制备涂层/薄膜可以用更低的成本达到 相似的性能,于是许多学者提出将高熵合金应用于 涂层/薄膜技术领域中^[11]。通过高熵合金涂层/薄 膜对合金的表面进行处理,可以有效的提高合金的 性能。目前,高熵合金涂层/薄膜大体上可以分为二 类^[1213]:一是,以高熵合金为主要成分的高熵合金金 属涂层/薄膜;二是,通过添加碳、氮、氧等非金属元 素的高熵合金基复合材料涂层/薄膜。

高熵合金所具有的特性决定了高熵合金涂层/ 薄膜的设计绝不可能是元素功能的简单叠加,高熵 合金中多种元素的不同特性和内在关系,使得在设 计高熵合金涂层/薄膜时不能仅仅考虑"基本元素" 与"功能元素",还要对合金系统中的化学成分、相的 组成、组织的形成与变化的规律进行研究。高熵合 金通过与涂层/薄膜的热力学和动力学机理相结合, 设计出高熵合金涂层/薄膜^[14-15]。高熵合金涂层/薄 膜的设计与高熵合金的十分相似,极度的依赖于以 往的设计经验或者在结果的基础上进行优化改

收稿日期:2021-10-29

基金项目:中国科学院青年创新促进会项目(2017459)

作者简介: 闫巨擘(1998-), 男, 辽宁省铁岭市人, 硕士研究生, 主要研究方向为腐蚀与防护, E-mail: yanjubo1998@163. com。

进^[16-17]。总的来说,对于高熵合金涂层/薄膜的设计 研究仍然有待发展、完善及创新。

由于高熵合金涂层/薄膜在功能涂层方面展现 了巨大的应用潜力,在涂层/薄膜应用中占有重要地 位^[18-20]。高熵合金涂层/薄膜的优异性能,可以应用 于刀具涂层、耐火框架涂层、船舶的强耐蚀涂层、移 动式氢存储材料涂层、涡轮叶片涂层、电子器件材料 薄膜、高频通信材料薄膜、超导体薄膜和热电薄膜等 方面^[21]。

从高熵合金涂层/薄膜的定义出发,对多种不同 高熵合金涂层/薄膜的硬度、弹性模量、热稳定性能、 耐腐蚀性能、耐磨性能进行了综述,展现了不同的方 式用以提高高熵合金涂层/薄膜的性能,对高熵合金 涂层/薄膜性能提升的原因以及机理进行解释,最后 对高熵合金涂层/薄膜未来的发展方向以及意义进 行了展望。

高熵合金涂层/薄膜的硬度、弹性模 量研究

由于高熵合金具有的高熵效应和缓慢扩散效 应,高熵合金涂层/薄膜的晶体结构也通常表现为简 单的固溶体结构或者非晶结构,而较难形成金属间 化合物相。当多主元高熵合金的晶体结构为固溶体 时,由于元素种类较多,各主元元素的原子半径也不 同,占据的晶格点阵具有随机性,因此合金有明显的 固溶强化效应,导致位错运动、晶面滑移困难,从而 使合金具有高强度和高硬度的特点,使高熵合金涂 层/薄膜具有较高的硬度和弹性模量。

1.1 高熵合金氮化薄膜的硬度和弹性模量的研究

由于氮化合金TaN^[21]、CrN^[22]和NbN^[23]等具有 优异的硬度和弹性模量,许多学者通过多种不同的 方式来制备氮化合金以提高高熵合金的性能。例 如,Yeh^[24]等以FeCoNiCrCuAlMn(HE7)和 FeCoNiCrCuAl_{0.5}(HE6)为靶材,通过改变薄膜中的 氮含量来改变高熵合金薄膜的硬度,其中HE6和 HE7合金薄膜的硬度分别为4.4和4.2 GPa,而 (HE6)N和(HE7)N薄膜的最高硬度分别为10.4和 10.6 GPa,硬度至少是其合金薄膜的两倍大。 Khan^[25]等制备了(AlCoCrCu_{0.5}FeNi)N薄膜,发现氮 气与氩气流量的比值(氮流比)为25%时,沉积的高 熵合金薄膜具有最高的硬度,这主要是因为:FCC 和BCC的混合立方晶体结构变为部分非晶相,晶粒 或团簇尺寸由130—150 nm降低到75—85 nm;另一 方面,随着气体中氮含量的增加,金属Al完全转变 为 Al₂O₃和 AlN,薄膜中其他二元氧化物和氮化物 (如 Cr₂O₃和 CrN)的含量也随之增加,这对薄膜的硬 度提高也有一定的贡献。

Cui^[20]等以AlCrTiZrHf高熵合金为靶材,通过 改变氮气流量制备高熵合金氮化薄膜。图1为不同 氮流速率下(AlCrTiZrHf)N薄膜的力学性能。从图 1可以清楚的看到:当氮流比为5:4时,高熵合金薄 膜具有最优的力学性能,硬度的提高是因为形成金 属氮化相和元素间的固溶强化效应;但是随着氮气 流量继续增大,氮化薄膜的硬度和弹性模量开始下 降,主要原因是随着氮含量的不断增加,过量的氮元 素会在合金靶的表面形成氮化物,转变为了靶材表 面氮化物的直接溅射,这不仅降低了薄膜的溅射速 率,而且直接导致了薄膜的质量下降,从而使高熵合 金氮化薄膜的硬度和弹性模量略有下降。

通过制备高熵合金氮化涂层/薄膜,使涂层/薄 膜析出具有高硬度、高弹性模量的增强相,如AlN、 CrN、TaN和NbN等氮化物,相较于高熵合金涂层/ 薄膜,这些氮化物具有更高的硬度和弹性模量,可以 很好地改善高熵合金涂层/薄膜的硬度和弹性模量, 同时高熵合金中形成的金属氮化相和元素间可能存 在的固溶强化效应也对薄膜性能有一定影响。

1.2 沉积参数对硬度、弹性模量的影响

Hsieh^[27]等使用等原子 AlCrNbSiTiV 合金靶材 制备了高熵合金薄膜,在制备过程中改变沉积参数 后发现:直流功率的变化对维氏硬度的影响最为显 著,可以将维氏硬度提高 29.4%;通过改变溅射功 率来减小晶粒的尺寸,从而导致晶界密度的增加,以 此限制了位错的移动,是硬度增加的主要原因。 Khan^[28]分别在 200、250 和 300 W 三种不同射频 功率下沉积了 AlCoCrCu_{0.5}FeNi 的高熵合金薄膜。 通过图 2的 XRD 图谱可以观察到:所有溅射功率下 薄膜均为 FCC+BCC 固溶体结构,并且薄膜结晶度 随功率的增加而提高;当功率为 300 W 时,薄膜结晶 度最高,晶粒尺寸最大;当功率为 200 W 时,薄膜的 硬度最高为 13 GPa,而 300 W 薄膜的硬度最低为 4.5 GPa。这种硬度的变化可能是由于晶粒尺寸的 增加、Al浓度的降低和晶界密度的降低引起的。

度 XRD图谱^[28] 膜 XRD图谱^[28]

Figure 2 XRD spectra of AlCoCrCu_{0.5}FeNi high entropy alloy films under different sputtering power

通过改变制备过程中的溅射功率,从而改变薄膜的结晶度、晶粒尺寸及晶界密度,以改变高熵合金 涂层/薄膜的硬度和弹性模量,其中晶界密度的增加,可以限制界面的错位移动,以此来提高薄膜的硬 度和弹性模量。

1.3 晶相结构对薄膜硬度和弹性模量的影响

双相结构也是增强薄膜硬度和弹性模量的一种 方式,双相结构通过增强材料的强塑性平衡、界面硬 化和相变诱导硬化来提高强度和延性。Cai^[29]等使 用调制合金的策略制备了具有FCC/BCC双相结构 的高熵合金薄膜。随着靶材中的Al含量的增加, Al₂CoCrCuFeNi高熵合金薄膜由单一FCC转变为 FCC+BCC,Al含量继续增加双相结构又转变为了 BCC结构。其中双相HEA薄膜由均匀等轴晶粒组 成,与单相FCC高熵合金相比,双相高熵合金硬度 更高可达10.4 GPa。其中晶界强化、固溶强化和相 界面强化是主要的强化机制^[30]。

Wang^[31]等研究三种不同结构的CoCrFeMnNi

高熵合金薄膜分别为非晶态、高密度纳米孪晶结构 和超高密度纳米柱状孪晶,图3为三种结构的TEM 图像。结果表明,超高密度纳米柱状孪晶具有较高 的硬度,这是应变硬化和脱孪共同作用的结果。结 构改变不仅使CoCrFeMnNi材料具有了硬度和疲 劳性能的优异的组合,而且提供了一个克服硬度和 疲劳性能之间的矛盾的可能。Liao^[32]等制备了 CoCrFeNiAl_{0.3}高熵合金薄膜,薄膜结构为面心立方 纳米晶体和少量有序NiAl型体心立方结构。测试 表明,CoCrFeNiAl_{0.3}高熵合金薄膜的弹性模量约为 191 GPa,纳米硬度约为11.2 GPa,约为块体高熵合 金的4倍,这是由于薄膜内部形成了纳米晶结构和 优越的生长取向。

图 3 CoCrFeMnNi高熵合金薄膜横截面的TEM图像^[31]
Figure 3 Cross-sectional TEM images of CoCrFeMnNi high entropy alloy films

不同的晶相结构通常表现出较大的性能差异, 其中BCC结构通常具有更高的硬度和弹性模量,制 备双相结构的高熵合金涂层/薄膜对薄膜的硬度和 弹性模量有一定提升,同时纳米晶结构也具有改变 薄膜硬度和弹性模量的作用。

2 高熵合金涂层/薄膜热稳定研究

高熵合金的热稳定性能研究主要指合金的抗高 温氧化的能力,主要通过氧化动力学曲线、氧化层 XRD、氧化膜表面形貌、氧化膜截面形貌等进行分 析体现。高熵合金具有较高的热稳定性及抗高温氧 化的能力,这是因为高熵合金在高温下将会有更大 的原子混乱度,因此高熵合金无论是结晶态还是非 晶态都会变得更加稳定,仍然存在固溶强化效应,可 获得极高的高温强度。

2.1 晶体结构对高熵合金热稳定性的影响

高熵合金中的高混合熵促进了随机固溶体、非 晶态合金或纳米晶结构的形成。这几种结构在相对 较高的温度下依然稳定。其中BCC结构的热稳定 性更好,但较低的Al含量与较高的Cu、Co和Ni含 量相结合,会促进FCC结构的形成^[33]。Dolique^[34] 等采用直流磁控溅射法制备了不同结构 AlCoCrCuFeNi薄膜,A样品为BCC+FCC固溶体 结构,B样品为FCC固溶体结构。当薄膜中Al含量 低于15%时,Al促进FCC固溶体的形成,当Al含 量高于15%时,Al有利于BCC结构的形成;样品 A、B中A1含量分别为13%和10%,有助于结构向 BCC+FCC的混合结构演化。通过样品A、B不同 退火温度的 XRD 图谱(图4) 对比可以发现:样品 A 在 310 ℃以上发生相变,导致 BCC 组织消失,形成 AlCr二元合金相,但始终存在金属薄膜;在510℃以 上,样品B的HEA薄膜的完整性受到严重影响,发 生了蒸发和硅化物的形成。

Figure 4 XRD spectra of sample B under different annealing temperature

在高熵合金的热稳定性中,晶相结构具有重要的作用,其中BCC结构具有更好的热稳定性,因此相较于单一FCC结构高熵合金薄膜,双相结构或BCC结构的高熵合金薄膜通常具有更优异的热稳定性。

2.2 难熔高熵合金的热稳定性

难熔金属是指熔点高于1800℃并有一定储量 的金属^[35],通过在高熵合金涂层/薄膜中加入W、 Ta、Nb、Zr、Cr和B等难熔金属和非金属来提高热稳 定性。Sheng^[36]等制备的NbTiAlSiW高熵合金薄膜 具有优异的热稳定性,在700℃高温处理24h后没 有观察到大的变化,这表明 NbTiAlSiW 薄膜即使在 经700℃高温处理后也表现出优异的热稳定性,但 在1000℃高温下热处理1h后 NbTiAlSiW 薄膜就 会结晶为纳米级粒子,薄膜从非晶形态转变为BCC 结构,这种变化是由于在薄膜中占很大一部分比重 的W和Nb是BCC结构。

Hung^[37]等制备了 VNbMoTaW和 VNbMoTaWCrB 高熵合金涂层,加入 Cr和 B元素后 VNbMoTaW高 熵合金涂层的 BCC结构转变为了非晶态结构。结果 表明:VNbMoTaW高熵合金涂层未进行高温氧化时 薄膜的硬度为(11.4±1.8) GPa,当温度为800 °C、高 温氧化1h后涂层的硬度降至(3.6±1.3) GPa;而 $V_{10.4}Nb_{10.5}Mo_{10.5}Ta_{11.2}W_{10.5}Cr_{16.3}B_{28.6}高熵合金涂层的$ 硬度为(18.4±0.5) GPa,500 °C高温氧化1h后其硬度为(15.9±1.1) GPa,热稳定性较好,这是因为 Cr和 B元素的加入使得高熵合金涂层转变非晶状结构并再涂层中形成复杂的难熔金属氧化物。

通过在高熵合金中引入难熔金属及一些耐高温 金属、非金属,使得高熵合金通常具有较高的热稳定 性,在高温环境下形成热稳定性更高的BCC结构或 者析出的复杂的难熔金属氧化物是难熔高熵合金热 稳定性提高的主要原因。

2.3 高熵合金氮化薄膜热稳定性

Kao^[38]等研究了 TaNbSiZrCrN_x高熵合金涂层 的热稳定性。结果表明:经热处理后涂层中只含有 纯金属 Cr,不再存在 Ta和Nb,然而这些氧化物与无 氮涂层的氧化物并无显著差异;掺氮的高熵合金涂 层比不掺氮的高熵合金涂层具有更好的热稳定性, 涂层具有非晶态结构;在750℃下退火1h,氮流比 为0—0.3时,涂层为BCC结构,而氮流比为0.5时 涂层为FCC结构,所有涂层在退火后的结合力和硬 度均无明显地变化。一般来说,退火后表面性能变 化越小,表明热稳定性越好^[39]。也就是说,可以推 断出掺杂氮的涂层具有较高的热稳定性。

Shen^[40]等对(Al_{0.34}Cr_{0.22}Nb_{0.11}Si_{0.11}Ti_{0.22})₅₀N₅₀高 熵合金的热稳定性进行了研究,发现涂层即使是在 1000°C退火后仍保持其NaCl型FCC结构,没有观 察到显著的晶粒生长。而高温下相和结构稳定的原 因是双重的,首先高温下固溶相的稳定性主要是高 熵效应的反映,其次严重的晶格畸变效应降低了晶 界能及晶粒粗化的驱动力^[41]。随着退火温度的升 高,晶格常数降低了,这种降低是由于消除了溅射沉 积过程中引入的点缺陷。同样,Chen等^[42]研究的 (AlCrTaTiZr)N高熵合金薄膜在不同退火温度下 的 XRD 谱图(图 5),结果表明:(AlCrTaTiZr)N高 熵合金薄膜即使在 900 ℃温度下仍保持相的稳定, 同时没有识别出衍射图的变化,而在 36 和 42 °处的 小而宽的两个主要峰对应的仍是 FCC 结构,这说明 剩余的原始非晶和晶体纳米复合结构尽管存在部分 结晶结构,但并没有与 Si 衬底发生相互扩散或反 应,薄膜在高温下保持了热稳定性。

图5 (AlCrTaTiZr)N高熵合金薄膜在不同退火温度 下的XRD谱图^[40]

Figure 5 XRD spectra of (AlCrTaTiZr)N high entropy alloy films under different annealing temperature

制备高熵合金氮化薄膜具有更好的热稳定性, 这是由于氮元素的加入通常会改变高熵合金薄膜的 结构,其结构转变为热稳定性更好的BCC结构,同 时高熵合金的高熵效应可能由于氮元素的加入进一 步强化,从而对薄膜的热稳定性产生影响。

3 高熵合金涂层/薄膜耐腐蚀性能 研究

当合金中含有多个主元元素时形成的高熵效应 会使合金形成单一的固溶体,且通过改变合金体系 的元素组成和元素含量,合金的混合熵会达到最大 值,倾向形成无序固溶体,其耐蚀性也会相应提高。 同时,多主元高熵合金中某些元素易形成致密氧化 膜,而且高熵合金具有非晶、微晶、单相、低自由焓等 特性,使得高熵合金通常具有较高的耐腐蚀性,因此 对于其耐腐蚀能力研究较为普遍。对高熵合金耐腐 蚀性研究通常使用普通浸泡腐蚀和电化学腐蚀两种 方法,通过绘制腐蚀动力学曲线、动电位极化曲线、 腐蚀表面形貌分析、腐蚀产物成分分析等方法进行。

3.1 减小晶粒尺寸、改变晶粒分布提高耐腐蚀 性能

Gao^[43]等对比研究了CoCrFeNiAl_{0.3}高熵合金 薄膜和SS304室温下在3.5%的NaCl溶液中的耐 腐蚀性能(图6)。HEA薄膜的腐蚀电位高于 SS304,腐蚀电流密度略小,同时HEA薄膜的临界 点蚀电位高于SS304,并且钝化区比SS304的钝化 区要大得多,说明钝化的高熵合金涂层具有更好的 抗局部腐蚀能力。这是由于粒径相对较小且分布均 匀的纳米粒子容易形成致密的氧化层作为被动保护 膜。试验结果表明,在NaCl溶液中CoCrFeNiAl_{0.3} 高熵合金薄膜比SS304不锈钢的局部腐蚀的敏感性 更低。

图6 CoCrFeNiAl_{0.3}高熵合金薄膜和SS304在3.5% NaCl溶液中的动电位极化曲线^[43]

Figure 6 The potentiodynamic polarization curves of CoCrFeNiAl_{0.3} high entropy alloy films and SS304 in 3.5% NaCl solution

Zhao^[44]等制备了呈现单一BCC细纳米晶结构 的AlTiCrNiTa涂层,该涂层具有纳米晶结构和逐 层腐蚀模式,涂层提高了X80钢在3.5%的NaCl溶 液中的耐蚀性。电化学腐蚀后发现,高铬镍钛涂层 仍能有效地保持表面的完整性和致密性,腐蚀后 AlTiCrNiTa高熵合金涂层的特征峰强度在一定程 度上降低,这证明了腐蚀过程已经发生,但没有发现 腐蚀产物的衍射峰,说明AlTiCrNiTa涂层具有较 高的结构稳定性,阻止腐蚀离子进一步渗透。

更小的晶粒尺寸以及更均匀的纳米晶粒分布更 容易在薄膜的表面形成一层致密的氧化薄膜,致密 的氧化薄膜可以很好的防止对薄膜的腐蚀,同时较小 的晶粒尺寸可以消除扩散通道,防止溶液通过扩散通 道对基底进行腐蚀,有效的提高薄膜的耐腐蚀性能。

3.2 制备氮化膜提高耐腐蚀性能

通过改变 NbTiAlSiZrN_x高熵合金薄膜的氮流 比,Xing^[45]等研究了在 0.5 mol·L⁻¹的 H₂SO₄溶液中 室温下的电化学耐蚀性(图 7)并发现:氮流比为 10%和 30%的薄膜比SS304更容易发生腐蚀,但其 腐蚀速率低于 SS304,NbTiAlSiZrN_x的钝化稳定性 较 SS304差;氮流比为 40%的薄膜具有较高的耐蚀 性,而氮流比为 30%的薄膜耐蚀性较低;此外, NbTiAlSiZrN_x高熵合金薄膜还发生点蚀。

图7 NbTiAlSiZrN_x高熵薄膜与SS304在0.5 mol·L⁻¹ H₂SO₄溶液中的动态电位极化曲线^[45]

Figure 7 The potentiodynamic polarization curves of NbTiAlSiZrN_x high entropy alloy films and SS304 in $0.5 \text{ mol}\cdot\text{L}^{-1}$ H₂SO₄ solution

Bachani^{46]}等研究了不同氮流量下(TiZrNbTaFe) N薄膜的耐腐蚀性能并发现:氮流比为10%的高熵 合金涂层具有最高的腐蚀电位为-122 mV,以及 最低的腐蚀电流密度为0.014 μA·cm⁻²;而氮流比为 0% 高熵合金金属薄膜的腐蚀电位为-222 mV,腐 蚀电流密度为 $0.036 \mu A \cdot cm^{-2}$;同样的氮流比为 10%的高熵合金涂层的回路尺寸要明显大于金属 涂层,这是由于氮流比为10%的高熵合金涂层在低 频时相角最高,表现出最佳的电容性能。因此,氮元 素的加入使TiZrNbTaFe高熵合金薄膜具有更好的 耐腐蚀性能。Zhao^[47]等制备了不同氮气流量的 (AlCrMoSiTi)N,氮化膜,系统地研究了氮流量对涂 层耐腐蚀性能的影响。研究发现:随着氮流比的增 大,高熵合金氮化薄膜的腐蚀电流密度显著降低,尤 其是 $R_{\rm N}$ =70% 时制备的涂层 $i_{\rm corr}$ 显著降低至2.2× $10^{-8} \mu A \cdot cm^{-2}$,接近金属薄膜的 1/27。耐腐蚀性能 提高是因为较高的R_N促进了涂层中N含量的增加, 导致了涂层从非晶态向面心立方(FCC)相的转变。 而低 R_N 下制备的(AlCrMoSiTi)N_x氮化物涂层中N 含量较低,形成的氮化物不稳定,涂层的非金属性较弱,使涂层易于腐蚀。随着N含量的增加, (AlCrMoSiTi)N_x氮化物涂层的非金属性增强,耐蚀 性得到一定程度的提高。

高熵合金氮化薄膜同高熵合金金属薄膜相比通 常具有更加优异的耐腐蚀性能,一方面这是由于氮 元素的加入可以增加薄膜的非金属性,而较高的非 金属性具有较高的耐腐蚀性,另一方面,氮元素的加 入使得高熵合金薄膜的结构发生变化,影响薄膜的 耐腐蚀性。

3.3 添加元素对高熵合金薄膜耐腐蚀性能的影响

由于 Al、Ti和 Zr 元素都具有较大的原子半径, 当它们的含量增加时,薄膜会发生严重的晶格畸变, 在薄膜制备过程中,晶界处产生了大量的位错、晶界 偏析和空位,使高熵合金薄膜的耐腐蚀性能较差。 因此与添加 Al、Ti和 Zr 等元素的高熵合金薄膜相 比,未添加这些元素的高熵合金涂层通常具有更好 的耐蚀性^[48]。同时 Ti和 Zr 的加入也会细化晶粒尺 寸,使晶界总长度增加,增加晶界腐蚀的可能。

Wang^[49] 等研究了三种不同元素比的 AlCoFeNiTiZr高熵合金薄膜,薄膜由FCC固溶相 和非晶相组成,具有典型的均匀多晶结构。薄膜的 耐蚀性能测试使用3.5%的NaCl溶液。腐蚀反应 过程中Al、Ti、Zr、Fe的元素含量均有所下降,因此 晶格畸变、空位、位错和晶界偏析减少,薄膜中的晶 粒细化和总晶界长度增加,同时结合强度的提高也 减少了薄膜的腐蚀剥落,因此薄膜的耐蚀性得到 提高。

Liu^[50]等人制备的AlCr_xNiCu_{0.5}Mo(x=0、 0.5、1.0、1.5、2.0)高熵合金。AlNiCu_{0.5}Mo涂层 是由BCC1+BCC2相组成的,而AlCr_xNiCu_{0.5}Mo涂 层是由FCC+BCC2相组成的。随着铬含量的增 加,涂层的结构由BCC1+BCC2相变为FCC+ BCC2相,这种结构能明显提高涂层在3.5%的 NaCl溶液中的电化学腐蚀性能和盐雾腐蚀性能,其 中x=2的高熵合金涂层的耐蚀性最好。耐蚀性提 高是因为涂层中的Cr元素能提高元素Fe的电极电 位,且电极电位越高,腐蚀程度越小,同时Cr的加入 使样品表面形成稳定的钝化膜,降低了钝化电位,减 缓了腐蚀。

在高熵合金薄膜中加入一些更大原子尺寸或更 小原子尺寸的元素,通常会加剧薄膜的晶格畸变,在 晶界出形成空位,可能对薄膜的耐腐蚀性能产生不 良的影响,而相同元素的不同含量下,薄膜可能表现 出不同的相的结构,相的结构对薄膜的耐腐蚀性能 影响较大。

4 高熵合金涂层/薄膜耐磨性能研究

相比于传统合金薄膜,高熵合金薄膜由于独特的组成、结构和性质,通常具有优异的耐磨性能,使 其成为非常具有发展潜力的硬质涂层材料。涂层/ 薄膜的耐磨性主要和薄膜的组织结构、硬度、弹性模 量、摩擦系数和磨损率有关,较小的表面粗糙度和较 高的硬度可以使薄膜的摩擦系数和磨损率降低,有 利于高熵合金涂层/薄膜耐磨性能的改善。

4.1 添加元素提高耐磨性能

薄膜的硬度是衡量薄膜耐磨性能的重要指标之一,通过在合金中加入合金元素如 Mn、Cr等元素固溶进基体或者形成硬质相来提高硬度,改善高熵合金涂层/薄膜的耐磨性能。Feng^[51]等研究了 Zr含量对(CrTaNbMoV)Zr_x高熵合金薄膜相的转变和摩擦学行为的影响。研究发现随着 Zr含量的增加,薄膜结构由 BCC 结构向非晶结构转变。在图 8 中观察到,随着 Zr含量的增加薄膜的摩擦系数和磨损率均有所下降,这主要是因为随着 Zr含量的增加,表面粗糙度有所降低。因为 Zr 原子的原子半径比其他的原子半径大,具有固溶强化效应,随着 Zr 含量的增加而增加,可有效提高耐磨性。同时薄膜的致密程度提高,也有助于提高耐磨性。对比发现 Zr 含量为 30.07% 时的磨损率比不添加 Zr 时的磨损率降低 25%。

图8 (CrTaNbMoV)Zr_x薄膜的摩擦系数和磨损率随 Zr含量的变化^[51]

Figure 8 The friction coefficient and wear rate curves of (CrTaNbMoV) Zr_x high entropy alloy films with the addition of Zr contents

AlCoCrFeNi高熵合金通常由无序BCC固溶 相和有序BCC固溶相组成,通过引入Mo^[52]、Al^[53]、 等金属元素,可以细化AlCoCrFeNi高熵合金的组 织和力学性能。Braic^[54]等研究了TiAlCrNbY高熵 合金金属薄膜和不同碳含量的碳化物薄膜的摩擦学 和耐磨性能。研究发现,制备的(TiAlCrNbY)C涂 层干摩擦系数较低,在0.05—0.25范围内,并且摩 擦系数随着碳含量的增加而降低,这是因为随着碳 含量增加,薄膜上形成了碳化物,而碳化物的摩擦性 能十分稳定,同时富碳的表面层可以起到润滑相的 作用,提高了耐磨性能。

Kao^[55]等研究了碳掺杂对CrNbSiTaZr高熵 合金涂层力学、摩擦学性能的影响,在不同乙炔 流量下的高熵合金涂层中,HC19涂层(乙炔流量 为19 mL·min⁻¹)的硬度最高为14.00 GPa,临界载 荷最高为64.5 N,COF最低为0.05,磨损深度最低 为0.29 μ m,磨损速率最低为0.17×10⁻⁶ mm³·N⁻¹·m⁻¹, 而图9中可以观察到在乙炔气体下,HC19的粗糙度 也是最低,其中HC19涂层涂层表现出如此优异的 力学性能和摩擦学性能是归功于其形成了相对坚硬 的DLC结构。

图9 不同气体流量下的CrNbSiTaZr高熵合金涂层的 粗糙度^[55]

元素的加入会改变薄膜的结构,这可能对薄膜 的硬度、摩擦系数、磨损率造成影响,而这三个因素 都是薄膜耐磨性能的重要参数,同时可能析出的化 合物如碳化物,对薄膜的摩擦系数会起到重要作用, 薄膜形成的 DLC 结构也可以有效的提高薄膜的力 学性能和耐磨性能。

4.2 硬质析出相高熵合金涂层耐磨性能研究

弥散分布的细小硬质陶瓷相的引入可进一步增 强多主元高熵合金的力学性能。常见的增强相有陶 瓷增强相 TiC、TiB、TiB₂、B₄C、氧化物 Al₂O₃、氮化 物 AlN 及金属间化合物 TiAl等^[56],通过在制备过程 中析出陶瓷增强相、金属间化合物、氧化物和氮化物 来制备复合高熵合金薄膜,提高薄膜耐磨性能。

由于VAlTiCrCu高熵合金涂层具有良好的耐 蚀性,但其硬度较低,耐磨性较差,Lu^[57]等采用磁控 溅射法制备了VAlTiCrCu/WC复合高熵合金薄膜, 研究了调制周期(17和90nm)对VAlTiCrCu/WC 复合高熵合金薄膜摩擦学性能的影响(图10)。结 果表明:VAlTiCrCu/WC多层涂层中的VAlTiCrCu 层具有典型的BCC相结构,WC层显著改善了HEA 涂层的力学行为;VAlTiCrCu涂层在26N时,由于 较大的塑性变形而完全失效;调制周期为17nm的 VAlTiCrCu/WC涂层直到32N也没有明显裂缝, 直到负载增加到55N时才失效;而调制周期是90 nm的涂层在22N时具有明显的裂缝,负载增加41 N时失效;与VAlTiCrCu涂层相比,调制周期较小 (17nm)的VAlTiCrCu/WC多层涂层具有更好的附 着力。

Lee^[58]等研究在Si(100)、SiO₂和WC-Co衬底上 沉积(CrNbSiTiZr)C_xN_y高熵合金薄膜。碳含量为

71%的(CrNbSiTiZr)C_xN_y高熵合金薄膜的摩擦系数 最低为0.13,磨损率最低为0.4×10⁻⁷ mm³·N⁻¹·m⁻¹。 随着氮含量的增加,薄膜的硬度、摩擦系数和磨损率 均增大,在氮含量为48.2%时达到最大值。所有薄 膜均表现为FCC结构,且随着氮含量的增加,衍射 峰向更高的角度移动,表明晶体氮化物相增加。其 中大部分碳化物和碳氮化合物薄膜的摩擦系数在 0.13—0.23之间,这是非常低的,这是因为薄膜中 含有碳碳键在非晶石墨区,具有良好的润滑效果。

通过在高熵合金薄膜中引入硬质陶瓷相来制备 复合高熵合金薄膜,陶瓷相的析出可以有效的提高 高熵合金薄膜的硬度,在薄膜中生成碳化物,对薄膜 起到润滑的作用,降低摩擦系数以及磨损率,可以显 著提高高熵合金薄膜的耐磨性能。

5 展望

目前,高熵合金的实际应用还很少,一方面是因 为制备的成本高,另一方面是因为由于合金元素较 多,导致合成机制十分复杂,现在还没有研究透彻。 高熵合金无论是在硬度、弹性模量、热稳定性、耐腐 蚀性能以及一些其它方面都有着优异的性能,同时 可以根据特殊的工作环境,专门研发适用的高熵合 金。高熵合金涂层/薄膜的未来研究方向可以考虑 一下几个方面。

(1)光能吸收涂层方向的研究。太阳能是十分 有潜力的新能源,而太阳热转换是一种不破坏环境、 更直接、更有效的方法。其中太阳能吸收涂层是太 阳能集热器必不可少的部分,吸收涂层应具有良好 的热稳定性、具有较高的光学性能以最大限度地提 高光热转换效率、具有优异的耐老化和防潮性能确 保长期稳定性和使用寿命,而高熵合金薄膜可以通 过改变合金元素、沉积参数以及制备氧化、氮化薄膜 来实现。通过改变 N₂/O₂的流速可以调节过渡金属 基涂层的光学常数来提高涂层/薄膜的光学性能。

(2)辐射耐受性方向的研究。由于需要安全、 可持续、高效的核反应堆,迫切寻找一种性能优越的 新型、先进的核反应堆结构材料,用于高辐照损伤的 极端环境。在纳米晶高熵合金薄膜中,受辐射损伤 较小的晶粒可以通过消除晶界辐照缺陷来保持其稳 定性和完整性,表现出更强的辐射耐受性。通过超 细纳米晶设计和高晶格畸变从而进行抑制辐射所引 起的偏析水平对相稳定性的影响。高熵合金是核反 应堆结构材料的一个重要方案之一,具有非常重要 的发展价值。 (3)生物腐蚀方向的研究。由于高熵合金优异 的耐腐蚀性能,通过对合金涂层在人体中的生物腐 蚀研究,未来将合金用作人体骨骼的替代品,可以很 好的解决现在人造骨骼的耐腐蚀性低,以及合金硬 度,弹性模量不足的问题。

(4)电子方向研究。高熵合金具有十分优异的 电磁性能,随着对高熵合金薄膜电磁方面的深入研 究,可能将高熵合金应用到微电子原件和微电子设 备上。

(5)耐磨性方向研究。高熵合金通常具有较高 的硬度以及简单的固溶体结构,通过对高熵合金的 组成元素进行灵活搭配,制备复合高熵合金涂层/薄 膜,制备硬质耐磨析出相进一步提高高熵合金涂层/ 薄膜的耐磨性能,未来在摩擦应用领域具有重要 价值。

因为高熵合金的特性,合金中元素成分含量的 微小变化可引起合金整体性能的巨大差异,从而通 过调整元素,来获得所需要的合金性能。由于各行 业对特定合金性能的需求,具有优异调制性能的高 熵合金涂层/薄膜可以认为是未来材料发展中的重 要方向之一。

参考文献:

- [1] 刘源,李言祥,陈祥,等.多主元高熵合金研究进展[J].材料导报,2006,20:4-6.
- [2] 陈哲,陆伟,严彪.机械合金化制备高熵合金研究进展 [J].金属功能材料,2012(3):51-55.
- [3] 鲍美林,乔珺威.密排六方结构高熵合金研究进展[J]. 中国材料进展,2018,436:24-32.
- [4] 王颜臣. 难熔高熵合金研究进展[J]. 现代冶金, 2018, 46:19-22.
- [5] YEH J W. Recent progress in high-entropy alloys [J].European Journal of Control, 2006, 31:633-648.
- [6] YEH J W, CHEN Y L, LIN S J, et al. High-entropy alloys—A new era of exploitation [J]. Materials Science Forum, 2007, 560:1-9.
- [7] 李工,崔鹏,张丽军,等.高熵合金研究现状[J].燕山 大学学报,2018,42:4-13.
- [8] 董天顺、刘琦、李艳姣,等.高熵合金涂层的研究现状及 展望[J].材料保护,2020,498:144-148.
- [9] LIANG X B, WEI M, CHENG J B, et al. Reaserch progress in advanced materials of high-entropy alloys [J]. Journal of Materials Engineering, 2009, 30:75-79.
- [10] 龙琼,罗君,李小丽,等.高熵合金涂层的研究现状 [J].电镀与涂饰,2018,37:359-366.
- [11] GAO M C . Progress in high-entropy alloys[J]. JOM, 2013, 65:1749-1750.
- [12] 陈永星,朱胜,王晓明,等.高熵合金制备及研究进展

[J]. 材料工程, 2017(11):129-138.

- [13] 赵腾雄,康蓉,李培友.高熵合金薄膜涂层研究进展[J].铸造技术,2017(4):746-748.
- [14] 许诠, 刘谦, 黄燕滨, 等. 高熵合金涂层的研究现状 [J]. 电镀与涂饰, 2019, 38:326-333.
- [15] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122:448-511.
- [16] CHEN J, ZHOU X, WANG W, et al. A review on fundamental of high entropy alloys with promising hightemperature properties [J]. Journal of Alloys and Compounds, 2018, 760:15-30.
- [17] HSUEH H T, SHEN W J, TSAI M H, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films $(AlCrSiTiZr)_{100-x}N_x$ [J]. Surface and Coatings Technology, 2012, 206:4106-4112.
- [18] WU Z F, WANG X D, CAO Q P, et al. Microstructure characterization of Al_xCo₁Cr₁Cu₁Fe₁Ni₁ (x=0, 2.5) high-entropy alloy films [J]. Journal of Alloys & Compounds, 2014, 609:137-142.
- [19] LU X, BRAULT P, THOMANN A L, et al. AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study [J]. Applied Surface Science, 2013, 285:810-816.
- [20] ASHBY M, SHERDIFF H, CEBON D. Materials: Engineering, science, processing and design [J]. Materials Today, 2007, (10)59-67.
- [21] YANG Y H, CHEN D J, WU F B. Microstructure, hardness, and wear resistance of sputtering TaN coating by controlling RF input power [J]. Surface &. Coatings Technology, 2016, 303:32-40.
- [22] ZHANG J, LI Z, WANG Y, et al. A new method to improve the tribological performance of metal nitride coating: A case study for CrN coating[J]. 2019, 173: 109158.
- [23] FONTALVO G A, TERZIYSKA V, MITTERER C. High-temperature tribological behaviour of sputtered NbN_x thin films[J]. Surface & Coatings Technology, 2007, 202:1017-1022.
- [24] CHEN T K, SHUN T T, YEH J W, et al. Nanostructured nitride films of multi-element highentropy alloys by reactive DC sputtering[J]. Surface &. Coatings Technology, 2005,188:193-200.
- [25] KHAN N A, AKHAVAN B, ZHOU C F, et al. High entropy nitride (HEN) thin films of AlCoCrCu_{0.5}FeNi deposited by reactive magnetron sputtering[J]. Surface and Coatings Technology, 2020, 402:126327.
- [26] CUI P, LI W, LIU P, et al. Corrigendum to "effects

of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf) N high-entropy alloy nitride films" [J]. Journal of Alloys and Compounds, 2020, 834:155361.

- [27] HSIEH T H, HSU C H. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films[J]. Current Applied Physics: The Official Journal of the Korean Physical Society, 2018, 18(5):512-518.
- [28] KHAN N A, AKHAVAN B, ZHOU C F, et al. RF magnetron sputtered AlCoCrCu_{0.5}FeNi high entropy alloy (HEA) thin films with tuned microstructure and chemical composition [J]. Journal of Alloys and Compounds, 2020,836:155348,
- [29] CAI Y P, WANG G J, MA Y J, et al. High hardness dual-phase high entropy alloy thin films produced by interface alloying [J]. Scripta Materialia, 2018, 162: 281-285.
- [30] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004 (6):299-303.
- [31] WANG Z, WANG C, ZHAO Y L, et al. High hardness and fatigue resistance of CoCrFeMnNi high entropy alloy films with ultrahigh-density nanotwins [J]. International Journal of Plasticity, 2020, 131: 102726.
- [32] LIAO W B, LAN S, GAO L B, et al. Nanocrystalline high-entropy alloy (CoCrFeNiAl_{0.3}) thin-film coating by magnetron sputtering [J]. Thin Solid Films, 2017, 638:383-388.
- [33] TONG C J, CHEN Y L, YEH J W, et al. Microstructure characterization of Al_xCoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metallurgical and Materials Transactions A, 2005, 36:881-893.
- [34] DOLIQUE V, THOMANN A L, BRAULT P, et al. Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis [J]. Surface and Coatings Technology, 2010, 204:1989-1992.
- [35] 刘张全,乔珺威.难熔高熵合金的研究进展[J].中国 材料进展,2019,452:41-48.
- [36] SHENG W J, YANG X, ZHU J, et al. Amorphous phase stability of NbTiAlSiN_x high-entropy films [J]. Rare Metals, 2018.37(8):682-689.
- [37] HUNG S B, WANG C J, CHEN Y Y, et al. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings [J]. Surface and Coatings Technology, 2019, 375:

802-809.

- [38] KAO W H, SU Y L, HORNG J H, et al. Structure, mechanical properties and thermal stability of nitrogendoped TaNbSiZrCr high entropy alloy coatings and their application to glass moulding and micro-drills[J]. Surface and Coatings Technology, 2020,405:126539.
- [39] PHANI A R, HAEFKE H. Effect of annealing temperature on antireflection property and water contact angle of fluorine-based hydrophobic films by a sol-gel technique [J]. Materials Letters, 2004, 58: 3555-3558.
- [40] SHENWJ, TSAIMH, TSAIKY, et al. Superioroxidation resistance of (A_{10.34}Cr_{0.22}Nb_{0.11}Si_{0.11}Ti_{0.22}₅₀N₅₀ high-entropy nitride [J]. Journal of the Electrochemical Society, 2013, 160(11):531-535.
- [41] HUANG P K, YEH J W. Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV) N superhard coatings [J]. Scripta Materialia, 2010, 62 (2):105-108.
- [42] CHEN D S, CHEN M K, CHANG S Y. Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for cu metallization [J]. Ecs Transactions, 2009, 19:751.
- [43] GAO L, LIAO W, ZHANG H, et al. Microstructure, mechanical and corrosion behaviors of CoCrFeNiAl_{0.3} high entropy alloy (HEA) films [J]. Coatings, 2017, 7(10):156.
- [44] ZHAO S, HE L X, FAN X X, et al. Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiTa high entropy alloy coating on X80 pipeline steel[J]. Surface and Coatings Technology, 2019, 375: 215-220,
- [45] XING Q. WANG H. CHEN M, et al. Mechanical properties and corrosion resistance of NbTiAlSiZrN_x high-entropy films prepared by RF magnetron sputtering[J]. Entropy, 2019, 21(4):396.
- [46] BACHANI S K, WANG C J , LOU B S , et al. Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics [J]. Journal of Alloys and Compounds, 2021,873:159605.
- [47] ZHAO Y M, CHEN S N, CHEN Y J, et al. Superhard and anti-corrosion (AlCrMoSiTi) N_x high entropy nitride coatings by multi-arc cathodic vacuum magnetic filtration deposition[J].Vacuum, 2022, 195:110685,
- [48] CHEN R, CAI Z, PU J, et al. Effects of nitriding on the microstructure and properties of VAlTiCrMo high-

entropy alloy coatings by sputtering technique [J]. Journal of Alloys and Compounds, 2020, 827:153836.

- [49] WANG H D, LIU J N, XING Z G, et al. Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films [J]. Surface Engineering, 2019, 36:1-8.
- [50] LIU X Q. ZHANG Y X. WANG X R, et al. Microstructure and corrosion properties of AlCr_xNiCu0.5Mo (x=0, 0.5, 1.0, 1.5, 2.0) high entropy alloy coatings on Q235 steel by electrospark— Computer numerical control deposition [J]. Materials Letters, 2021, 292:129642,
- [51] FENG X, ZHANG K, ZHENG Y, et al. Effect of Zr content on structure and mechanical properties of (CrTaNbMoV)Zr_x high-entropy alloy films[J]. Nuclear Instruments and Methods in Physics Research, 2019, 457:56-62.
- [52] VALLIMANALAN A, KUMARESH S P, MUTHUKUMARAN S, et al. Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating [J]. Materials today: Proceedings, 2019, 27:2398-2400
- [53] BACHANI S K, WANG C J, LOU B S, et al. Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory

high entropy alloy coatings: Effect of Al content [J]. Surface and Coatings Technology, 2020, 403 (7) : 126351.

- [54] BRAIC M, BRAIC V, BALACEANU M, et al. Characteristics of (TiAlCrNbY) C films deposited by reactive magnetron sputtering [J]. Surface & Coatings Technology, 2010, 204(12):2010-2011.
- [55] KAO W H, SU Y L, WU H M, Effects of carbon doping on mechanical, tribological, structural, anticorrosion andanti-glass-sticking properties of CrNbSiTaZr high entropy alloy coatings [J]. Thin Solid Films, 2021,717,138448
- [56] 罗国珍,周廉.中国钛的研究和发展[J].稀有金属材 料与工程,1997,26(5):6.
- [57] ZL A, YMA B, SR B, et al. A novel design of VAITiCrCu/WC alternate multilayer structure to enhance the mechanical and tribo-corrosion properties of the high-entropy alloy coating [J]. Materials Characterization, 2021, 176:111115,
- [58] LEE C Y, CHIEN C H, YEH J W, et al, Effects of the carbon-to-nitrogen ratio on the microstructure and properties of (CrNbSiTiZr) C_xN_yhigh-entropy carbonitride films[J]. Materials Chemistry and Physics, 2021, 277: 125374,

Research Progress on Properties of High Entropy Alloy Coatings/Films

YAN Jubo^{1,2}, LAI Zhenguo², TAN Xin¹, WEN Xinyu^{2,3}, ZHANG Bin²

(1. Inner Mongolia University of science and technology, College of Mechanical Engineering, Baotou 014010, China;2. Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of material wear and protection, Lanzhou 730000, China;3. College of chemistry and Bioengineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract: The mixing of multiple chemical elements of high entropy alloys will lead to high mixing entropy, severe lattice distortion, slow diffusion and 'cocktail' effects, which shows different characteristics, such as excellent mechanical properties, thermal stability, corrosion resistance, wear resistance, oxidation resistance and compressive strength. Combining the design concept of high entropy alloy with surface technologies to prepare high entropy alloy coatings/thin films, which usually show similar properties as the high entropy alloy block materials, or even better properties than the high entropy alloy block materials. High entropy alloy coatings/thin films have great potentials in many application fields. This review paper focuses on the recent progresses of different ways to improve the hardness, elastic modulus, thermal stability, corrosion resistance and wear resistance of high entropy alloy coatings/films are prospected.

Keywords: high entropy alloy; coating and thin films; hardness; elastic modulus; thermal stability; corrosion resistance; wear resistance