材料研究与应用 2022,16(4):584-591 Materials Research and Application

DOI:10.20038/j.cnki.mra.2022.000411

Ⅱ型范德华异质结g-C₆N₆/GaTe光催化剂 的第一性原理研究

董洪阳^{1,3},任山令^{2,3},黄欣^{2,3},杨志红^{2,3},王允辉^{2,3}

(1. 南京邮电大学电子与光学工程学院,江苏南京 210023; 2. 南京邮电大学理学院信息物理研究中心,江苏南京 210023; 3. 江苏省新能源工程技术实验室,江苏南京 210023)

摘要:二维材料因其独特的物理性质在光催化领域备受关注,通过构建异质结是提高二维材料光催化性能的有效策略。基于密度泛函理论,采用第一性原理方法系统研究了g-C₆N₆/GaTe范德华异质结的光催化性质。计算结果表明:g-C₆N₆/GaTe的晶格失配率为0.6%,形成能为-486 eV,异质结构稳定;异质结是带隙值为1.45 eV的间接带隙材料,形成稳定的能带交错排列,价带和导带的能带偏置分别为0.56和1.54 eV,同时在界面处生成由g-C₆N₆指向GaTe的内置电场,构成典型的Ⅱ型异质结构。在内置电场和带偏作用下,有利于光生电子-空穴对的有效分离,提高异质结的光催化性能。异质结在可见光范围内的光吸收系数高达约7×10⁴ cm⁻¹,制氢转换效率为16.48%,有利于光解水反应。最后,尝试对异质结施加载荷,在拉伸应力作用下异质结有明显的红移显现。g-C₆N₆/GaTe异质结是一种具有应用前景的光催化剂,该研究结果为g-C₆N₆/GaTe异质结的设计和制备提供了理论基础。

关键词: Ⅱ型异质结;第一性原理;光催化;电子结构 中图分类号:O471.5 **文献标志码**: A

文章编号:1673-9981(2022)04-0584-08

引文格式:董洪阳,任山令,黄欣,等.Ⅱ型范德华异质结g-C₆N₆/GaTe光催化剂的第一性原理研究[J].材料研究与应用, 2022,16(4):584-591.

DONG Hongyang, REN Shanling, HUANG Xin, et al. First-Principles Study on the Type II Van Der Waals Heterojunction g- $C_6N_6/GaTe$ Photocatalyst[J]. Materials Research and Application, 2022, 16(4):584-591.

二十一世纪以来,能源短缺已经成为限制经济 发展的严峻问题,传统化石能源的大量使用在不断 加剧着环境污染,开发和利用可再生能源迫在眉睫。 其中,光催化制氢技术可利用太阳能将水分解转化 为可用的氢气,反应产物干净无污染,引起了人们的 广泛关注^[1]。自从1972年Fujishima发现在380 nm 的近紫外光作用下,TiO2电极能够使水在常温下分 解为H2和O2后,半导体材料就成为了潜在光催化剂 的研究对象^[2]。2004年以来石墨烯样品的成功制 备^[3],使得二维半导体材料进入了人们的视野。与 传统三维材料相比,二维材料具有较大的比表面积, 有利于OH⁻,H⁺和H2O分子吸附,同时其低维的特 性可以缩短光生电子和空穴的扩散距离,降低电子 和空穴复合的可能性以及提高量子产生率等^[45]。 然而,二维半导体材料作为光催化剂在实际应用中 依然存在很多问题,比如光吸收范围的局限性、氧化 还原能力不足等,都限制了二维半导体材料的光催 化性能^[6]。人们也提出了多种策略来提高二维材料 光催化效率,例如掺杂^[7]、吸附^[8]、缺陷^[9]及建立范德 华异质结^[10]等。

范德华异质结是通过范德华力将单层二维材料 结合起来,不仅表现出丰富的界面性质,而且可以优 化改善原始二维材料的电子结构、光吸收,甚至热传 导性能。一般来说,异质结可以分为Ⅰ型异质结和 Ⅱ异质结。Ⅰ型异质结的导带底和价带顶都来源于 同一个材料,在光照下光生电子和空穴都流向同一 个单层材料,对光生载流子的分离不会起到改善作 用;Ⅱ型异质结的导带底和价带顶来源于不同材料,

收稿日期:2022-01-17

作者简介:董洪阳(1994-),男,江苏连云港人,硕士研究生,主要研究方向为范德华异质结的光催化水分解, Email:dhy264021@outlook.com。

也就是说将形成交错的能带结构,可以有效分离光 生载流子,使得氧化和还原反应在不同的单层材料 中进行,并且能带偏移可以驱动电子和空穴在不同 的通道中进行转移,对于降低载流子复合、延长载流 子寿命都有改善作用。因此,与I型异质结相比,II 型异质结在光催化领域的应用具有明显优势。目 前,理论研究者们利用第一性原理方法对II型异质 结进行了诸多材料探索,例如BP/BSe^[11],PtS₂/As^[12]和 $C_2N/WS_2^{[13]}$ 等,理论预测这些范德华异质结的光催 化性能优于其单层材料,在可见光区的光吸收能力 明显增强。

本研究选择二维材料 g-C₆N₆^[14]和 GaTe^[15]来构 建范德华异质结。g-C₆N₆是具有直接带隙的半导体 二维材料,表现出优异的热力学和动力学稳定性,然 而 g-C₆N₆的带隙较宽,使得其对可见光的光吸收不 敏感而对紫外光更敏感。另外,其他研究也表明通 过构建基于 g-C₆N₆的异质结可以提高光催化性 能^[16-17]。GaTe是层状半导体材料,具有独特的物理 和化学性质,例如其弹性模量明显小于GaSe 和 MoS₂等二维材料,表明更容易被拉伸,因此可以通 过施加应变来改变其电子结构性质。GaTe单层膜 可以通过化学沉积方法制备得到,其表现出良好的 稳定性,有利于实际应用^[18]。

基于第一性原理方法,系统研究了二维g-C₆N₆/ GaTe范德华异质结的结构、电子和光学性质,包括 能带结构、态密度、电荷转移、能带边缘位置的影响 和光吸收系数等,同时探讨了其光催化性能。最后, 探索了通过外加应变来进一步提高异质结的光吸收 性能,进而达到提高光催化性能的目的。

1 计算方法

第一性原理计算采用的是基于密度泛函理论 (DFT)的VASP软件包^[19],电子和离子之间的相互

作用采用的是投影缀加波(PAW)方法展开,交换关 联势采用广义梯度近似(GGA)中的PBE泛函进行 处理^[20]。由于使用交换关联泛函(PBE)计算电子 结构得到的带隙一般小于实验值,因此为了获得更 加准确的能带结构和光吸收谱,采用了混合 25%Hartree-Fock交换能的杂化密度泛函(HSE06) 进行计算[21]。在计算过程中,平面波的截断能设定 为500 eV,优化的收敛标准是确保原子间受力小于 0.02 eV·Å⁻¹,以及体系总能量在自洽迭代过程中小 于1.0×10⁻⁵ eV。使用 Monkhorst-Pack 方法在布里 渊区中进行取点采样,用于PBE静态计算的k点网 格是8×8×1,而用于HSE06静态计算的k点网格 是5×5×1。考虑到异质结的两层之间存在范德华 相互作用力,电荷密度间的波动存在着动态关联, GGA方法无法准确描述,范德华校正方法(DFT-D3)被用于异质结的所有计算,这种方法被实验验 证了其计算的准确性[22]。为了避免由于周期性导 致的相邻层间耦合作用,沿着Z方向设置一个大于 20 Å的真空区域。

2 结果与讨论

2.1 二维g-C₆N₆/GaTe范德华异质结的晶体结构

首先对原始单层 GaTe和g-C₆N₆进行了结构优 化并计算了能带结构,如图1所示。优化后的单层 GaTe的晶格常数为4.14Å,采用PBE及HSE06计 算得到的带隙分别为1.43和2.10 eV,可以看到其 导带底在高对称点 M处,而价带顶在 Γ 点附近,表 明单层 GaTe 是间接带隙半导体;优化后的单层 g-C₆N₆的晶格常数为7.12Å,采用PBE和HSE06计 算得到的带隙分别为1.54和3.18 eV,其导带底和 价带顶均在高对称点 K处,表明单层 g-C₆N₆是直接 带隙半导体。计算结果与文献[23-24]研究结果相 一致。

根据以上单层材料的计算,构建了二维g-C₆N₆/ GaTe范德华异质结。由于单层GaTe和g-C₆N₆晶 格参数差别较大,考虑到晶格匹配问题,采用了 $\sqrt{3} \times \sqrt{3}$ 的GaTe超胞和 1×1 的g-C₆N₆原胞进行异 质结结构搭建,此时该异质结的晶格失配率仅为 0.6%,远小于5%,具备较高的实验制备可行性。 从对称性出发构建了三种不同的g-C₆N₆/GaTe异质 结构,分别为旋转角度0、60和120°的异质结 构(图2)。

Figure 2 Top and side views of three stacking methods of $g-C_6N_6/GaTe$ heterojunctions

为了在以上3种可能的结构中确定最稳定的结构,通过公式 $E_f = E_{(gC_eN_e/GaTe)} - E_{GaTe} - E_{gC_eN_e}^{[17]}$ 计算了异质结的形成能,其中 $E_{GaTe}, E_{gC_eN_e}$ 及 $E_{(gC_eN_e/GaTe)}$ 分别表示单层GaTe,g-C₆N₆和g-C₆N₆/GaTe异质结的总能量, E_f 表示异质结的形成能。通过计算得到三种不同g-C₆N₆/GaTe异质结构的形成能,分别为-0.471,-0.486和-0.458,其中旋转角度60°的结构形成能最小,说明其最稳定。另外,经过优化后旋转角度60°结构的层间距为3.54Å,表明在范德华相互作用力的有效范围内,两层之间的相互作用力是典型的范德瓦相互作用力。因此,后面的所有计算均基于旋转角度60°的异质结构来进行。

2.2 二维g-C₆N₆/GaTe 范德华异质结的电子结构

采用 PBE和 HSE06, 计算得到 g-C₆N₆/GaTe异 质结的带隙分别为 0.59和 1.45 eV, 小于单层 GaTe 和单层 g-C₆N₆的带隙, 这是由于形成异质结后能带 偏置导致的, 且带隙大于 1.23 eV 可满足光催化分 解水的条件。图 3为 g-C₆N₆/GaTe 异质结的能带结 构。从图 3 可以看到, g-C₆N₆/GaTe 异质结是间接 带隙半导体, 其导带底位于高对称点 K处, 价带底位 于高对称点 Γ 附近。同时发现, g-C₆N₆/GaTe 异质 结的导带底和价带顶分别由 g-C₆N₆和 GaTe 贡献, 形成了交错的能带结构,表明g-C₆N₆/GaTe异质结 是Ⅱ型异质结。而且,g-C₆N₆/GaTe异质结在导带 底和价带顶的色散关系与g-C₆N₆的导带底和GaTe 的价带顶几乎一致,说明异质结中两层间的相互作 用力是较弱的范德瓦尔斯力,并没有形成化学键。 通常来说,Ⅱ型异质结构具有良好的电荷分离能力。 在光照下g-C₆N₆/GaTe异质结中跃迁到导带的光生 电子和留在价带的空穴的转移通道不同,导带偏移 (0.56 eV)促使光生电子向 g-C₆N₆转移,最后停留在 g-C₆N₆层。相应的,价带偏移(1.54 eV)促使光生空 穴向GaTe转移,最后停留在GaTe层。经过转移后 的光生电子和空穴将分别在g-C₆N₆层上参与还原 反应,在GaTe层上参与氧化反应。因此,在g-C₆N₆/GaTe异质结中,光生电子和空穴具有较好的 空间分离特性,有助于抑制电子空穴复合,提高了光 催化的能力。

为了深入地研究载流电荷的转移机制,通过公 式 $\Delta \rho = \rho_{(gC_{e}N_{e}/GaTe)} - \rho_{GaTe} - \rho_{gC_{e}N_{e}}^{[11]}$ 计 算 g-C₆N₆/ GaTe 异质结的差分电荷密度,其中 $\rho_{(gC_{e}N_{e}/GaTe)} + \rho_{GaTe}$ 及 $\rho_{gC_{e}N_{e}}$ 分别表示 g-C₆N₆/GaTe 异质结、GaTe 和 g-C₆N₆的电荷密度。计算得到的g-C₆N₆/GaTe 异质 结的差分电荷密度图如图4所示。从图4电荷密度 可以看到,在界面处有较为明显的电荷重新分布,并 且电子是从g-C₆N₆侧转移到GaTe 侧,使得电子在 GaTe 侧积累,而空穴在g-C₆N₆侧,这意味着在异质 结界面处会形成一个内置电场,电场方向从g-C₆N₆ 指向GaTe。从图4静电势图也能看到,g-C₆N₆/ GaTe 异质结存在电势差(0.91 eV),进一步表明内 置电场的产生。这一内置电场对异质结中的电子和 空穴分离起重要作用,可以促进不同单层中电子和 空穴的分离,延长载流子的寿命,同时增强g-C₆N₆/ GaTe异质结的层间耦合作用,有利于提升光催化效率。

图4 g-C₆N₆/GaTe异质结的平面平均差分电荷密度和3D差分电荷密度图及静电势图

Figure 4 Planar average differential charge density and 3D differential charge density plots, and electrostatic potential maps of g-C₆N₆/GaTe heterojunctions

2.3 二维g-C₆N₆/GaTe范德华异质结光催化分解 水性能

研究材料光催化水分解能力,首先确定材料的 带边位置,计算公式为 $E_{(CBM/VBM)} = E_{BGC} \pm \frac{1}{2} E_{g}^{HSE06}$, 其中 E_{BGC} 为相对真空层的带隙中心位置, E_{g}^{HSE06} 为HSE06计算得到的带隙^[25]。

图 5为单层 GaTe、g-C₆N₆、g-C₆N₆/GaTe 异质结 的带边位置图及 g-C₆N₆/GaTe 异质结的光催化机理 示意图,图中虚线表示 pH=0时分解水的氧化电位 (-5.67 eV)和还原电位(-4.44 eV)。从图 5的单 层异质结的带边位置图可以看到,g-C₆N₆/GaTe 异 质结的导带底和价带顶跨越分解水的氧化电位和还 原电位。异质结的氧化反应发生在 GaTe 层,带边 位置为-5.75 eV处,低于氧化电位(O₂/H₂O);而还

原反应发生在 $g-C_6N_6$ 层,带边位置为-4.30 eV处, 高于还原电位 (H^+/H_2) 。说明g-C₆N₆/GaTe异质结 可以进行氧化还原反应,有希望用于光催化水分解。 从图5的光催化机理示意图可见,在光照下,当吸收 的光子能量大于等于带隙时,异质结内部会产生光 生电子空穴对,电子会从价带顶跃迁到导带底;由于 内置电场的存在,抑制了GaTe价带处的空穴和 g-C₆N₆导带处的电子的复合;同时,在能带偏置的促 使作用下,GaTe导带处的电子会迁移到g-C₆N₆导 带处,g-C₆N₆价带处的空穴会迁移到GaTe价带处, 最后电子和空穴分别在g-C₆N₆导带和GaTe价带上 积累,具有更高浓度,并分别参与还原反应和氧化反 应。由于光生电子和空穴的有效分离,可以更好的 参与到光催化水分解反应中。因此,g-C₆N₆/GaTe 异质结是Ⅱ型光催化异质结,可以将水分解成H₂ 和 O20

monolayer $g-C_6N_6$ and $g-C_6N_6/GaTe$ heterojunction, and the photocatalytic mechanism of the $g-C_6N_6/GaTe$ heterojunction

2.4 双轴应变对二维 g-C₆N₆/GaTe 范德华异质结 电子结构的影响

施加应变是调节异质结电子结构的一种常用手 段^[26],因此尝试了通过改变异质结ab面内晶格常数 来模拟应变效应,以探索应变对g-C₆N₆/GaTe异质 结光催化性质的影响。施加的应变大小可表示为 $\eta = (a_{s} - a_{p})/a_{p}$,其中 a_{s} 和 a_{p} 分别表示施加和未施 加应变的g-C₆N₆/GaTe异质结的面内晶格常数,应 变量η的变化范围为-6%-6%,负值表示压缩应 变,正值表示拉伸应变,其结果如图6所示。从图6 可以看到,应变可以有效调节g-C₆N₆/GaTe异质结 的电子结构,具体表现为不管是压缩还是拉伸应变, 随着应变程度的增大,带隙呈减小趋势,变化范围为 0.74-1.47 eV。为了检查考虑的应变是否都在弹 性极限内,计算了每个原子的应变能 $E_s = (E_{strained} - E_{strained})$ $E_{\text{unstrained}}$)/n,其中n为异质结的总原子数。从图6还 可以看到,应变能曲线在双轴应变下与二次函数相 似,表明施加的应变在弹性极限内,应变是可逆的。

图6 g-C₆N₆/GaTe异质结的带隙和应变能随双轴应 变大小的变化关系

图 7 为 g-C₆N₆/GaTe 异质结在-6% 应变下的 能带结构图。从图 7 可见,在-6%的压缩应变下, g-C₆N₆/GaTe 异质结变成了直接带隙,导带底和价 带顶均在 Γ 点,仍保持交错能带结构。直接带隙更 有利于电子直接跃迁,产生光生电子和空穴需要的 能量减少,但是此时带边位置不利于进行水的氧化 还原反应。

图 7 g-C₆N₆/GaTe异质结在-6%应变下的能带结构图 Figure 7 Band structure diagram of g-C₆N₆/GaTe heterojunction at -6% strain

2.5 二维g-C₆N₆/GaTe异质结的光吸收和太阳能 制氢转换效率

光吸收系数是描述材料光学性能的一个重要物 理量,在水分解过程中起重要作用,光吸收系数可定 义为 $\alpha(\omega) = \sqrt{2} \frac{\omega}{c} \Big[\sqrt{\epsilon_1^2(\omega) + \epsilon_2^2(\omega)} - \epsilon_1(\omega) \Big]^{1/2} \Big]^{1/2}$ 其中 $\epsilon_1(\omega)$ 和 $\epsilon_2(\omega)$ 分别是介电函数的实部和虚部, c 是光的真空速度。图 8为g-C₆N₆/GaTe异质结的光 吸收谱。从图 8可以看到:在可见光范围内,光吸收 系数高达约 7×10⁴ cm⁻¹,表现出较强的光吸收强 度,在紫外区的光吸收强度更大;另外,当施 加+2%,+4%和+6%的应变时,光吸收谱出现红

图8 g-C₆N₆/GaTe异质结在未加应变下及施加不同应变下的光吸收谱

Figure 8 Optical absorption spectra of $g-C_6N_6/GaTe$ heterojunction under unstrained and under different strains

移,可见光区域内光吸收谱强度增强,并在+6%应 变下,光吸收系数超过1×105 cm⁻¹。说明通过施加 应变,可以改善 $g-C_6N_6/GaTe$ 异质结的光吸收性能。

为了预测 g-C₆N₆/GaTe 异质结的光催化性能, 计算了太阳能制氢转换效率,这是判断利用太阳能 进行光催化水分解能力的一项重要指标。假设光的 催化反应效率为100%,计算公式如下^[28]。

式(1) 中 η_{STH} 表示光吸收效率, $P(h\omega)$ 表示在 AM1.5的太阳能通量, △G为水分解的势能差1.23 eV,E是光催化过程中可用光子的能量。

由于载流子在不同材料之间迁移会有能量损 失,因此实际上用于光催化水分解的光子能量E是 在变化的。此处,还原反应需要的动能为0.2 eV $(其中 \chi(H_2))$ 定义为导带底和水还原电势之间的能 需要的动能 0.6 eV(其中 χ(O₂)定 氧化电势之间的能量差),所以E由 见式(2)。

(2);)

在单层 GaTe 中, $\gamma(H_2)$ 和 $\gamma(O_2)$ 分别为 0.81 和 0.06 eV;在单层 g-C₆N₆中, $\chi(H_2)$ 和 $\chi(O_2)$ 分别为 0.26 和 1.69e V;在 g-C₆N₆/GaTe 异质结中, γ(H₂)和 $\chi(O_2)$ 分别为 0.14 和 0.08 eV。通过计算可得单层 GaTe、单层 g-C₆N₆及 g-C₆N₆/GaTe 异质结的 太阳能制氢转换 效 率 分 别 为 5.66%、1.48% 和 16.48%,g-C₆N₆/GaTe异质结的转换效率明显高于单 层GaTe和单层g-C₆N₆的转换效率。图8为不同二维 单层材料的转换效率。从图9可见,g-C₆N₆/GaTe异 质结的转换效率高于某些原始单层二维结构材料,如 PtS₂^[12]、Al₂Se₃^[28]和Al₂S₂^[28]等。因此,g-C₆N₆/GaTe异 质结具有一定经济可行性,有希望用于光催化水 分解。

图9 部分二维材以及单层 GaTe, 单层 g-C₆N₆和 g-C₆N₆/ GaTe异质结的太阳能制氢转换效率

Figure 9 Solar hydrogen production conversion efficiencies of some 2D materials and monolayer GaTe, monolayer g-C₆N₆ and g-C₆N₆/GaTe heterojunctions

3 结论

构建二维g-C₆N₆/GaTe范德华异质结,并通过 第一性原理方法研究了其结构、电子和光学性质,揭 示了光催化反应机制。结果表明:g-C₆N₆/GaTe异 质结是间接带隙半导体,带隙值为1.45 eV,表现出 交错排列的能带结构,价带和导带的能带偏置分别 为 0.56 和 1.54 eV, 说明 g-C₆N₆/GaTe 异质结是 II 型异质结。差分电荷图发现,异质结中形成了从g-C₆N₆指向GaTe的内置电场.在内置电场和能带偏 置的作用下,有利于光生载流子的有效分离。通过 计算光吸收系数和太阳能制氢转换效率发现,g-C₆N₆/GaTe异质结在可见光区域内的光吸收系数 高达约7×10⁴ cm⁻¹,制氢转换效率为16.48%。另 外,尝试对异质结施加应变,发现带隙会变小,光吸 收谱出现红移,进一步改善了异质结在可见光区域 内的光吸收能力。因此,二维g-C₆N₆/GaTe范德华 异质结有望作为新型光催化剂用于水分解。

参考文献:

- [1] CHEN S, TAKATA T, DOMEN K. Particulate photocatalysts for overall water splitting [J]. Nature Reviews Materials, 2017(2): 17050.
- [2] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 5358: 37-38.

- [3] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science 2004, 5696:666-669.
- [4] JIANG X, WANG P, ZHAO J. 2D covalent triazine framework: A new class of organic photocatalyst for water splitting [J]. Journal of Materials Chemistry A, 2015,15 (3):7750-7758.
- [5] SUN Y, GAO S, LEI F, et al. Atomically-thin twodimensional sheets for understanding active sites in catalysis[J]. Chemical Society Reviews, 2014, 44 (3): 623-636.
- [6] WANG H, ZHANG L, CHEN Z, et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances [J]. Chemical Society Reviews, 2014, 43 (15):5234.
- ZHANG J, HUANG Y, LU X, et al. Enhanced BiVO₄photoanode photoelectrochemical performance via borate treatment and a NiFeOx cocatalyst [J]. ACS Sustainable Chemistry & Engineering, 2021, 24 (9): 8306-8314.
- [8] MAURINO V, MINERO C, PELIZZETTI E, et al. Influence of Zn (II) adsorption on the photocatalytic activity and the production of H₂O₂ over irradiated TiO₂
 [J]. Research on Chemical Intermediates, 2007, 33 (3-5):319-332.
- [9] LU X, YE K H, ZHANG S, et al. Amorphous type FeOOH modified defective BiVO₄ photoanodes for photoelectrochemical water oxidation [J]. Chemical Engineering Journal, 2022, 428:131027.
- [10] HUANG Y, LU Y, LIN Y, et al. Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants [J]. Journal of Materials Chemistry A, 2018,48 (6):24740-24747.
- [11] WANG, B J, LI X H, ZHAO R, et al. Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures
 [J]. Journal of Materials Chemistry A, 2018, 19 (6): 8923-8929.
- [12] REN K, TANG W, SUN M, et al. A direct Z-scheme PtS₂/arsenene van der waals heterostructure with high photocatalytic water splitting efficiency[J]. Nanoscale, 2020,33 (12):17281-17289.
- [13] KUMAR R, DAS D, SINGH A K. C₂N/WS₂ van der waals type-II heterostructure as a promising water splitting photocatalyst [J]. Journal of Catalysis, 2018, 359:143-150.
- [14] SRINIVASU K, GHOSH S. Photocatalytic splitting of water on s-triazine based graphitic carbon nitride: An

ab initio investigation [J]. Journal of Materials Chemistry A,2015,45 (3):23011-23016

- [15] ZHUANG H L, HENNIG RG. Single-layer group-III monochalcogenide photocatalysts for water splitting
 [J]. Chemistry of Materials, 2013, 25 (15): 3232-3238.
- [16] CHANG J, DONG N, WANG G, et al. Theoretical insight into two-dimensional g-C₆N₆/InSe van der waals heterostructure: A promising visible-light photocatalyst[J]. Applied Surface Science, 2021, 554: 149465.
- [17] WANG G, LONG X, QI K, et al. Two-dimensional CdS/g-C₆N₆ heterostructure used for visible light photocatalysis [J]. Applied Surface Science, 2019, 471:162-167.
- [18] WANG Z, SAFDAR M, MIRZA M, et al. Highperformance flexible photodetectors based on GaTe nanosheets[J]. Nanoscale, 2015, 16 (7):7252-7258.
- [19] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Phys Rev B Condens Matter, 1993, 48 (1):13115-13118.
- [20] PERDEW J. P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1998, 77 (18): 3865-3868.
- [21] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened coulomb potential[J]. The Journal of Chemical Physics, 2006, 124:8207-8215.
- [22] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. Journal of Chemical Physics, 2010, 132 (15):154104.
- [23] ZOLYOMI V, DRUMMOND N D, FAL'KO V I. Band structure and optical transitions in atomic layers of hexagonal gallium chalcogenides [J]. Physical Review B: Condensed Matter & MaterialsPhysics, 2013, 87 (19):195403-1-195403-6.
- [24] SRINIVASU K, MODAK B, GHOSH S K. Porous graphitic carbon nitride: A possible metal-free photocatalyst for water splitting [J]. The Journal of Physical Chemistry C, 2014, 118 (46):26479-26484.
- [25] TOROKER M C,KANAN D K, ALIDOUST N, et al. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes[J]. Phys Chem Chem Phys, 2011, 13 (37):16644-16654.

- [26] WANG G, ZHANG L, LI Y, et al. Biaxial strain tunable photocatalytic properties of 2D ZnO/GeC heterostructure [J]. Journal of Physics D: Applied Physics, 2020, 53 (1):015104.
- [27] XIN H, PAUDEL T R, SHUAI DT, et al. Hexagonal rare-earth manganites as promising

photovoltaics and light polarizers [J]. Physical Review B,2015, 92 (12):125201.1-125201.8.

[28] FU C F, SUN J, LUO Q, et al. Intrinsic electric fields in two-dimensional materials boost the solar-tohydrogen efficiency for photocatalytic water splitting [J]. Nano Letters, 2018, 18(10):6312-6317.

First-Principles Study on the Type II Van Der Waals Heterojunction g-C₆N₆/GaTe Photocatalyst

DONG Hongyang^{1,3}, REN Shanling^{2,3}, HUANG Xin^{2,3}, YANG Zhihong^{2,3}, WANG Yunhui^{2,3}

(1. School of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2. Information Physics Research Center, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3. New Energy Engineering Technology Laboratory of Jiangsu Province, Nanjing 210023, China)

Abstract: Two-dimensional materials have attracted much attention in the field of photocatalysis due to their unique physical properties, and constructing heterojunctions is an effective strategy to improve the photocatalytic performance of two-dimensional materials. The photocatalytic properties of $g-C_6N_6/GaTe$ van der Waals heterojunctions have been systematically investigated based on density functional theory. The calculated results show that the lattice mismatch ratio of $g-C_6N_6/GaTe$ is 0.6%, the formation energy is -486 eV and the heterostructure is stable. The heterojunction is an indirect band gap material with a band gap value of 1.45 eV, forming a stable interlaced arrangement of energy bands with an energy band bias of 0.56 eV and 1.54 eV in the valence and conduction bands, respectively. The built-in electric field pointing to GaTe constitutes a typical type II heterostructure. Under the action of the built-in electric field and band polarization, it is conducive to the effective separation of photogenerated electron-hole pairs and improves the photocatalytic performance of the heterojunction. The light absorption coefficient of the heterojunction in the visible light range is as high as 7×10^4 cm⁻¹, and conversion efficiency of the hydrogen production is 16.48%, which is favorable for the photolysis of water. Finally, an attempt was made to apply a load to the heterojunction, the heterojunction shows a clear red shift under tensile stress. $g-C_6N_6/$ GaTe Heterojunction is a promising photocatalyst, and the results of this study provide a theoretical basis for the design and preparation of $g-C_6N_6/GaTe$ heterojunction.

Keywords: type II heterojunctions; first principles; photocatalysis; electronic structure

(学术编辑:黎小辉)