文章编号:1673-9981(2021)02-0094-08

原位析出法制备 CoCu 纳米颗粒均匀修饰 $PrSr(CoCu)_{0.2}Mn_{0.8}O_{4-8}$ 陶瓷阳极材料*

王子鸣1,谭 婷1,宋 琛2,刘太楷2,刘 敏2,杨成浩1

1. 华南理工大学环境与能源学院,广东广州 510006;2. 广东省科学院新材料研究所,现代材料表面工 程技术国家工程实验室,广东省现代表面工程技术重点实验室,广东广州 510650

摘要:利用原位析法制备出 CoCu 合金(CCA)纳米颗粒均匀包覆的 Ruddlesden-Popper(RP)型 层状钙钛矿 PrSr(CoCu)_{0.2} Mn_{0.8}O_{4-δ}(RP-PSCCM)材料,通过 XRD 和 SEM 两种表征方法证明该 阳极的晶体结构和表面析出的颗粒情况. RP-PSCCM-CCA 阳极材料的电导率、对称电池的极化阻 抗及单电池的性能等测试结果表明, RP-PSCCM-CCA 具有优异的催化活性. RP-PSCCM-CCA 阳 极材料拥有较低的活化能,在 800 ℃时电导率达到 0.55 S/cm,优于传统的钙钛矿阳极.在 800 ℃ 下的 H₂ 气氛中, RP-PSCCM-CCA-GDC/LSGM/RP-PSCCM-CCA-GDC 对称电池的极化阻抗达到 0.125 Ω・cm², 而 RP-PSCCM-CCA-GDC/LSGM/LSCF-GDC 单电池的最大功率密度也达到了 696

mW/cm²,远超过其他的钙钛矿阳极,特别是 Cu 基阳极材料.以 C₃H₈为燃料时,单电池有着稳定的功率输出,表明 RP-PSCCM-CCA 是一种优异的抗积碳陶瓷阳极材料. 关键词:固体氧化物燃料电池;阳极;层状钙钛矿;合金纳米颗粒;原位析出

中图分类号:TM911.4 文献标识码: A

引文格式:王子鸣,谭婷,宋 琛等. 原位析出法制备 CoCu 纳米颗粒均匀修饰 PrSr(CoCu)_{0.2} Mn_{0.8} O₄₋₈陶瓷阳极材料[J]. 材料 研究与应用,2021,15(2):94-101.

WANG Ziming, TAN Ting, SONG Chen, et al. In-situ fabrication of CoCu alloy nanoparticles decorated PrSr(CoCu)_{0.2} Mn_{0.8} O₄₋₈ ceramic anode materials[J]. Materials Research and Application, 2021, 15(2):94-101.

固体氧化物燃料电池(SOFC)因其清洁、燃料 适应性强(H₂,CH₄和水煤气等),能量转换效率高 (可达到 80%以上)等优点,具有广阔的应用前景, 被认为是一种很有前途的新型发电装置^[1-3].SOFC 结构简单,主要由阳极、阴极和电解质三部分构成, 其中阳极作为燃料极,其对燃料的催化活性直接影 响电池的最终性能^[4-5].镍(Ni)对氢气(H₂)有着非 常高的催化活性,因而被广泛应用于 SOFC 阳极制 备. 但是,当使用碳氢燃料时,Ni 基阳极表面会发生 碳沉积,使得 Ni 基阳极的活性位点减少,甚至导致 阳极剥落,造成电池性能的大幅下降. 因此,开发出 具有优异催化活性的抗积碳阳极材料是 SOFC 的重 要研究方向之一^[6-7]. 钙钛矿材料在碳氢燃料下有 着优良的电子/离子导电性和抗积碳性能,是一种极 具潜力的阳极材料. 但是,钙钛矿阳极材料的催化活 性不如传统的镍基阳极,一般要对其进行一系列的

收稿日期:2021-05-24

^{*}基金项目:国家重点研发计划(2018YFB1502603);广东省应用型科技研发专项(2017B090916002).

作者简介:王子鸣(1999-),男,河南南阳人,硕士研究生,研究方向为固体氧化物燃料电池材料与器件开发.

通讯作者:杨成浩,男,河南南阳人,博士,研究方向为固体氧化物燃料电池材料与器件开发.

修饰和改性[8].

研究发现^[9-12],通过 A 及 B 位掺杂可有效增强 材料的离子电导率、改善材料的氧离子传导能力和 催化活性,如在 A 位和 B 位掺杂过渡金属等.其次, 通过表面修饰的方式,如利用浸渍方法在多孔阳极 材料中载入纳米催化剂可以有效提高材料的催化活 性,但是这种方法载入的纳米催化剂存在与基体连 接不紧密、纳米颗粒易聚集长大及尺寸分布不均匀 的缺点[13]. 原位析出的方法近年来引起广泛的关 注,此方法操作简单、不需要额外的制备步骤、析出 的颗粒与基体连接紧密,而且析出的纳米颗粒在高 温下不易团聚^[14-16]. Yang 等人^[14]采用原位析出的 方法制备了 RP-Pr_{0.8} Sr_{0.12} (Co, Fe)_{0.8} Nb_{0.2} O₄₊ (RP-PSCFN)-CFA 阳极材料,在 900 ℃和 H₂ 气氛下还 原时,有大量的 CoFe 合金纳米颗粒的析出,而且阳 极材料的晶体结构由初始的立方相钙钛矿转变为层 状钙钛矿, RP-PSCFN-CFA 陶瓷阳极对 H₂ 有着优 异的催化性能,且其对碳氢燃料有着出色的催化活 性、优异的耐硫抗积碳性能及长期稳定性.

Cu 作为阳极催化剂具有电子导电率高和抗积 碳等优点,被广泛用于 SOFC 抗积碳阳极材料制备 研究^[14].但是,由于 Cu 熔点低,Cu 基阳极在高温下 容易团聚.本研究通过 B 位 Co 和 Cu 两种元素共掺 杂及原位析出的方法制备出 CoCu 合金(CCA)纳米 颗粒均匀包覆的 RP 型 PrSr(CoCu)_{0.2} Mn_{0.8}O₄(RP-PSCCM)的 SOFC 阳极材料,有效地解决了在 Cu 高 温下团聚的问题.测试表明,RP-PSCCM-CCA 对氢 气和碳氢燃料具有优异的催化活性,在 800 ℃的 H₂ 气氛中最大功率密度为 696 mW/cm²,并且在碳氢 燃料下有着长达 60 h 稳定功率输出,这为 Cu 基 SOFC 阳极的开发提供了新的思路.

1 实验部分

1.1 电极材料及浆料的制备

1.1.1 电极材料的制备

采用溶胶凝胶法制备出 $Pr_{0.5}Sr_{0.5}Co_{0.1}Cu_{0.1}$ -Mn_{0.8}O₃(P-PSCCM)粉体材料.首先按照化学计量 比分别称取 $Pr(NO_3)_2 \cdot 6H_2O, Sr(NO_3)_2, Co(NO_3)_2 \cdot 6H_2O, Cu(NO_3)_2 和 Mn(NO_3)_2 \cdot 6H_2O, 将其溶于$ 一定量的去离子水中,然后按照摩尔比(柠檬酸:金属离子=2:1和EDTA:金属离子=1:1)加入柠 檬酸和 EDTA 作为络合剂,最后加入一定量的氨水 将溶液 pH 调制弱碱性.将所得溶液加热待其蒸发 至透明凝胶,将凝胶在 200 ℃烘箱中放置 10 h,待其 膨胀和干燥完全后置于研钵中研磨均匀,在 1000 ℃ 下煅烧 5 h(升温速率 2 ℃/min),冷却至室温即可 得到 P-PSCCM 粉体材料.同时,阴极材料 $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-}$ (LSCF)和 Gd_{0.2} Ce_{0.8} O_{1.9} (GDC)粉体则采用同样的方法制得^[17].

1.1.2 电极浆料的制备

按质量比称取一定量的 PSCCM 粉末和 GDC (PSCCM:GDC=1:1),在加入总质量 5%的淀粉 作为造孔剂,三者充分混合后加入同样质量的 10% 的 PVB 松油醇(10%的 PVB 和 90%的松油醇混合 于烧杯中在 60 ℃烘箱中充分溶解),在研钵中研磨 后作为阳极浆料.而阴极(LSCF-GDC)浆料也是按 照同样的方式制备.

1.2 对称电池和全电池的制备

 1.2.1 电解质 La_{0.8} Sr_{0.2} Ga_{0.83} Mg_{0.17} O₃₋₈ (LSGM) 的制备

采用固相法制备电解质.首先按照化学计量比 分别称取 La₂O₃,SrCo₃,Ga₂O₃和 MgO 置于球磨罐 中,再加入一定量的无水乙醇作为溶剂,在球磨机上 球磨 24 h,然后在1200 ℃下煅烧 2 h,最后得到电解 质 LSGM 前驱体粉末.称取一定量的 LSGM 前驱 体粉末,加入 8%的浓度为 10%的 PVB 乙醇,将其 研磨均匀后得到 LSGM 粉末.称取 0.2 g 的 LSGM 粉末置于直径为 13 mm 的磨具中,在压片机上压结 成片,将其在 1400 ℃下煅烧 10 h,最后得到 LSGM 电解质片,其厚度为 300 μm 左右.

1.2.2 单电池及对称电池的制备

采用丝网印刷法将阴阳极浆料均匀地涂布在 LSGM电解质片的两面,其中阳极浆料全部涂满整 个电解质片,阴极浆料的有效面积为 0.2 cm². 然后 在烘箱中烘干,再在 1100 ℃下烧结 2 h,最后得到完 整的 PSCCM-GDC/LSGM/LSCF-GDC 单电池. 在 两侧电极涂上一层薄薄的铂浆作为集流体,将单电 池固定在陶瓷管一端,用银浆和陶瓷封接后用于电 化学测试. 另外,利用丝 网印刷的方法将 PrSr-(CoCu)_{0.2} Mn_{0.8}O₄-GDC (RP-PSCCM-GDC)阳极浆 料均匀涂布在 LSGM 电解质两侧,在 1100 ℃下煅 烧 2 h 后制备出 LSGM 电解质支撑的对称电池,电 极面积为 0.2 cm².

在电化学性能测试过程中,采用四电极测试法 进行测试.将制备完成的电池放入管式炉中测试,阳 极一侧处于燃料气氛(50 mL/min 的氢气+3%的 H₂O)中,而阴极则处于空气气氛中,在700~800 ℃ 温度之间进行测试.

1.3 表 征

使用 X 射线衍射仪(XRD, Bruker D8),其中电 压为 40 kV、电流 100 mA,对材料还原前后的结构 进行 表征.使用扫描电子显微镜(SEM JSM-7600F),对材料还原前后及电池测试后的形貌进行 观测和表征.在电池测试时使用流量计(APEX, Alicat Scientific)对于气体流速进行控制,其中氢气 流速为 50 mL/min.使用电化学工作站(德国, ZAHNER),对电池的阻抗和电化学性能进行测量.

2 结果与讨论

2.1 阳极材料结构分析

图 1 为制备的 P-PSCCM 还原前后的 XRD 图. 从图 1 可见:利用溶胶凝胶法制备的 P-PSCCM 粉 末为立方相钙钛矿(图 1 中曲线 a),与 SrMnO₃ 的 晶体结构符合(JCPDS,No. 24-1213);在经过 800 ℃ 还原 5 h 后,P-PSCCM 粉末由立方相钙钛矿转变为 Ruddlesden-Popper(RP)型层状钙钛矿相(RP-PSCCM)(图 1 中曲线 b),还原后在 42 °和 56 °处有 CoCu 合金(CCA)峰的出现,说明在还原之后有 CCA 析出;将还原之后的 RP-PSCCM 粉末进行重 新烧结之后,该粉末又显示了纯的立方相钙钛矿(图 1 中曲线 c),这说明 PSCCM 有着在不同的气氛下 良好的氧化还原循环性.

图 1 制备的 P-PSCCM 还原前后的 XRD 图 (a)制备的 P-PSCCM 样品;(b)在 800 ℃下 H₂ 中还原 5 h 后 P-PSCCM 样品;(c)将还原后的样品在 800 ℃空气中重 新烧结 2 h 得到的样品

Fig. 1 XRD patterns of P-PSCCM before and after reduction (a) as prepared P-PSCCM powders; (b) P-PSCCM powders reduced at 800 $^{\circ}$ C in H₂ for 5 h; (c) the reduced P-PSCCM powders re-oxided at 800 $^{\circ}$ C in air for 2 h

2.2 阳极材料和单电池的形貌分析

2.2.1 阳极材料形貌

利用扫描电子显微镜(SEM)对于 P-PSCCM 粉 末在还原前后的形貌进行分析,图 2 为还原前后 P-PSCCM 粉末的 SEM 图. 从图 2(a)~图 2(b)发现, 在 800 ℃还原之后粉末表面有明显的析出的纳米颗 粒,颗粒直径大概在 50 nm 左右,而且与基体连接 紧密. 这说明在 H₂ 还原气氛下,B 位过渡金属 Co 和 Cu 的价态发生改变,产生 0 价金属,由于还原驱

图 2 还原前后 P-PSCCM 粉末的 SEM 图

(a)制备的 P-PSCCM 粉末;(b)800 ℃下 H₂ 中还原 5h 后粉末;(c)将还原后的粉末在 800 ℃下空气中重新烧结 2 h 后粉末
 Fig. 2 SEM images of P-PSCCM powders before and after reduction

(a) as prepared P-PSCCM powders; (b) P-PSCCM powders after reduced at 800 °C in H₂ for 5 h;

(c) the reduced powders was re-oxided at 800 $^\circ C$ in air for 2 h

2021

动力使得金属元素析出晶格到达晶体表面,从而形成合金纳米颗粒.从图 2(c)可见,还原后的电极材料在 800 ℃空气中重复烧结之后,粉末表面纳米颗粒消失,表明在氧化气氛下,纳米颗粒化合价再次发生改变,0 价金属氧化成 2 价和 3 价金属,再次进入晶格内部,形成完整的 P-PSCCM 钙钛矿正极阳极材料,说明该阳极材料具有非常好的氧化还原稳定性.

2.2.2 单电池的截面形貌

图 3 为测试后单电池截面的 SEM 图. SEM 分 析发现,单电池经过电化学性能测试之后电池完好 无损,电池的 LSCF-GDC 阴极和 RP-PSCCM-CCA- GDC 阳极仍然与 LSGM 电解质紧密地连接在一起,且电解质致密无空隙出现,这有效防止了阴极和 阳极的接触,很好地起到隔离电子及传输氧离子的 作用.从图 3(a)~图 3(c)可见:多孔 LSCF-GDC 阴极的厚度为 32.4μ m,其与 LSGM 电解质紧密连接 在一起,非常有利于氧离子的传输(图 3(a)和(b));同时,阳极也很疏松多孔,并且表面有纳米颗粒析出,阳极厚度为 42.8μ m(图 3(a)和(c)),更有利于 氢离子与氧离子发生反应,且有效地扩大了反应的 三相界面,增加了反应位点,提高了电极的反应 速率.

图 3 测试后单电池截面的 SEM 图

(a)全电池;(b)LSCF-GDC/LSGM 阴极/电解质界面;(c)RP-PSCCM-CCA-GDC/LSGM 阳极-电解质界面

Fig. 3 SEM images of the single cell after electrochemical performance test

(a) SEM image of the whole cell; (b) SEM image of the LSCF-GDC/LSGM cathode/electrolyte interface;

(c) SEM image of the RP-PSCCM-CCA-GDC/LSGM anode/electrolyte interface $% \mathcal{A}^{(1)}$

2.3 阳极材料的电导率

SOFC 阳极材料的电导率传导电子对单电池的 极化阻抗和功率密度有非常重要的影响,所以研究 电极的电导率就尤为重要.将 P-PSCCM 粉末压结 成条经高温烧结后,采用四端子引线法在湿 H₂ 气 氛(50 mL/min+3%H₂O)下和 500~800 ℃温度区 间对其电导率进行测试.由于阳极材料还原后的电 导率大幅高于还原前,此处重点研究还原后的 RP-PSCCM-CCA 阳极材料的电导率.

图 4 为电导率的测试结果,小图为阿伦尼乌斯 公式 拟合曲线. 从图 4 可见,在 800 ℃ 时 RP-PSCCM-CCA 电极材料的电导率达到了 0.55 S/ cm,随着温度的上升 RP-PSCCM-CCA 材料的电导 率不断增大.这主要是由于 RP-PSCCM 基体材料在 高温下有更多的氧空位产生,而 RP-PSCCM-CCA 被认为是一种 P 型半导体,是以电子空穴为载流 子,在产生大量氧空位时使电导率快速升高.从图 4 还可见, RP-PSCCM 的活化能为 0.90 eV,说明该

图 4 RP-PSCCM-CCA 的电导率曲线 Fig. 4 The conductivity curve of RP-PSCCM-GDC

材料的反应势垒较低,更容易发生燃料气体催化反 应,提高电极反应效率.

2.4 电化学性能测试

2.4.1 对称电池的阻抗测试

为了研究 RP-PSCCM-CCA 阳极材料的催化活 性,在 700~800 ℃下湿 H₂ 气氛(50 mL/min+3% H₂O)中研究了 LSGM 电解质支持 RP-PSCCM-CCA-GDC/LSGM/RP-PSCCM-CCA-GDC 对称电 池的阻抗谱,图 5 为对称电池 RP-PSCCM-CCA-GDC/LSGM/RP-PSCCM-GDC 的阻抗谱. 从图 5 可见,在 700,750 和 800 ℃下对称电池的阻抗分别

图 5 对称电池 RP-PSCCM-CCA-GDC/LSGM/ RP-PSCCM-GDC 的阻抗谱

Fig. 5 The impedance spectrum of symmetrical cell RP-PSCCM-CCA-GDC/LSGM/RP-PSCCM-CCA-GDC 为 0. 263, 0. 176, 0. 125 Ω • cm². 与其他钙钛矿阳极 对比, RP-PSCCM 有着极小的极化阻抗^[18-19].

2.4.2 单电池的电化学性能

对以 RP-PSCCM-CCA-GDC 为阳极、LSCF-GDC 为阴极、LSGM 为电解质的电解质支撑单电池 RP-PSCCM-GDC/LSGM/LSCF-GDC,在 800 ℃下 湿 H₂ 气氛(50 mL/min+3%H₂O)中进行电化学性 能分析.

图 6 为单电池 RP-PSCCM-CCA-GDC/LSGM/ LSCF-GDC 的电化学性能曲线.图 6(a)为 RP-PSCCM-GDC/LSGM/LSCF-GDC 单电池的阻抗 谱,其中实轴代表了该电池的阻抗,其中高频与实轴 的交点为电池的欧姆阻抗,低频与实轴的交点为电 池的总阻抗,极化阻抗为总阻抗与欧姆阻抗的差,从 图 6(a) 可见: 单电池的在 800 ℃的极化阻抗为 0.125 Ω·cm²,其远远小于其它的 Cu 基阳 极^[20-21],说明 RP-PSCCM-GDC 阳极具有非常高的 催化活性;单电池在 800 ℃的欧姆阻抗为 0.3 Ω· cm²,其是极化阻抗的 2.4 倍,这说明通过降低电解 质的厚度可以降低单电池的欧姆阻抗及提高其输出 功率;随着温度降低,极化阻抗和欧姆阻抗不断增 大,但是极化阻抗的增大幅度远远大于欧姆阻抗.说 明在温度变化的过程中,极化阻抗的影响力大于欧 姆阻抗,所以降低极化阻抗则是改善阳极性能的主 要方向.

图 6(b)为电流密度电压以及功率密度之间的关 系.从图 6(b)可见:单电池的开路电压(OCV)为 1.08 V,其与理论电压 1.1 V 接近,说明该单电池的电解质

图 6 单电池 RP-PSCCM-CCA-GDC/LSGM/LSCF-GDC 的电化学性能曲线 (a)单电池的 EIS 曲线;(b)单电池的 I-V-P 曲线 Fig. 6 Electrochemical performance RP-PSCCM-GDC/LSGM/LSCF-GDC single cell (a) EIS curve;(b) I-V-P curve

足够致密;单电池的最大功率密度为 696 mW/cm², 大于其它一些含 Cu 的阳极,如CeO₂-Co-Cu 复合阳 极(538.1 mW/cm²)^[22],La_{0.5} Sr_{0.5} Cu_{0.2} Fe_{0.8} O₃ (573 mW/cm²)^[23]和 Y_{0.08} Sr_{0.92} Ti_{1-x}Cu_xO₃ (350 mW/ cm²)^[24]等.说明当 Co 和 Cu 共掺杂进入 B 位,降低 了 B 位的平均价态,有效地促进了金属元素析出成 核,同时使得产生大量氧空位.在 H₂ 气氛下测试时 阳极由单钙钛矿转变成 RP 型钙钛矿,RP 型钙钛矿 由 AO 层和立方相钙钛矿层沿着 C 轴交替排列组 成,在还原气氛下两者之间成为氧空位的特殊传输 通道,从而加快了氧空位的传输.同时,CCA 纳米颗 粒从晶格中析出,与基体对 H₂ 进行共催化,进一步 改善了 H₂ 的 吸附 和 催化,有效地加快了反应 速率^[25]. 图 7 为 RP-PSCCM-CCA-GDC/LSGM/LSCF-GDC 单电池在湿丙烷一氮气(C₃H₈ 与 N₂ 的体积比 为 1:1)混合气氛下的电化学性能. 从图 7(a)可见, 在 800 ℃ 下 单电 池 的 最 大 功 率 密 度 达 到 361 mW/cm²,说明该阳极材料对碳氢燃料有着良好的 催化性能. 从图 7(b)可见,在 800 ℃下、电流密度为 0.2 A/cm² 的条件下,单电池的电压稳定在 0.5 V 左右,60 h 内没有明显的衰减,表现出很好的稳定 性,表明 RP-PSCCM-CCA-GDC 阳极材料具有优良 的抗积碳性能. 这是由于其中原位析出的 CCA 合金 纳米颗粒对丙烷很好的催化活性,而析出的 RP-PSCCM 多孔基体有很好的阳离子传导能力,能够 有效地防止碳的沉积,以及碳沉积导致的电池性能 下降.

Tig. 7 Electrochemical performance KI TSCEW ODC/ESOW/ESOF ODC single cen

(a) I-V-P curve of the single cell; (b) cell voltage of the single cell under a constant current rate of 0.2 A/cm^2

3 结 论

使用溶胶凝胶法制备的立方相钙钛矿 P-PSCCM 阳极材料,在800 ℃的湿H₂下还原5h 后,晶体结构由P-PSCCM转变为RP-PSCCM,并有 50 nm 左右的 CCA 纳米颗粒均匀析出并包覆在 RP-PSCCM 基体表面.电导率测试表明,在800 ℃ 时 RP-PSCCM-CCA 电极材料的电导率达到了0.55 S/cm,随着温度的上升 RP-PSCCM-CCA 材料的电 导率不断增大. RP-PSCCM-CCA-GDC 基单电池在 800 ℃下 H₂ 中的最大功率密度为 696 mW/cm²,并 且在碳氢燃料下也有着稳定的功率输出,这说明 RP-PSCCM-CCA-GDC 阳极具有非常好的催化活 性和抗积碳性能,是一种具有广阔前景的阳极材料.

参考文献:

- [1] LI C, MA Y, XIAO Y, et al. Advances in perovskite photodetectors[J]. Info Mat, 2020, 2(6): 1247-1256.
- [2] SIVAPRAKASH SENGODANL S C, AREUM JUN, TAE HO SHIN, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nature,2015, 14:

205-209.

- [3] XUE S, LI Y, ZHENG F, et al. Characterization of CeO₂ microspheres fabricated by an ultrasonic spray pyrolysis method[J]. Rare Met, 20201, 40: 31-39.
- XU X, ZHONG Y, SHAO Z. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis
 [J]. Trends in Chemistry, 2019, 1(4): 410-424.
- [5] JIANG San Ping, SIEW H C. A review of anode materials development in solid oxide fuel cells [J]. Journal of Materials Science, 2004, 39(4): 4405-4439.
- [6] DA SILVA A A A, BION N, EPRON F, et al. Effect of the type of ceria dopant on the performance of Ni/CeO₂ SOFC anode for ethanol internal reforming[J]. Applied Catalysis B: Environmental, 2017, 206: 626-641.
- [7] ROSELINA N R N, AZIZAN A. Ni nanoparticles: Study of particles formation and agglomeration [J].
 Procedia Engineering, 2012, 41: 1620-1626.
- [8] DUAN C, KEE R J, ZHU H, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells[J]. Nature, 2018, 557:217-222.
- [9] FLORENT T, MONA B, VINCENT D, et al. A-site order-disorder in the NdBaMn₂O_{5+ a} SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow[J]. Journal of materials Chemistry A, 2017: 11087-11095.
- [10] HOU N, LI P, LV T, et al. $Sm_{0.5}Ba_{0.5}MnO_{3-\delta}$ anode for solid oxide fuel cells with hydrogen and methanol as fuels[J]. Catalysis Today, 2017, 298: 33-39.
- [11] LU X, YANG Y, DING Y, et al. Mo-doped Pr_{0.6} Sr_{0.4} Fe_{0.8}Ni_{0.2}O_{3-δ} as potential electrodes for intermediatetemperature symmetrical solid oxide fuel cells [J]. Electrochimica Acta, 2017, 227: 33-40.
- [12] WITT S E, ALLEN A J, KUZMENKO I, et al. In situ structural and electrical conductivity characterization of Sr₂ MMoO_{6-δ} double perovskite solid oxide fuel cell anode materials[J]. ACS Applied Energy Materials, 2020, 3(6): 5353-5360.
- [13] PENNER S, GOTSCH T, KLOTZER B. Increasing complexity approach to the fundamental Surface and interface chemistry on SOFC anode materials[J]. Acc Chem Res, 2020, 53(9): 1811-1821.
- [14] YANG C, YANG Z, JIN C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Adv Mater, 2012, 24(11): 1439-43.
- [15] YANG C, LI J, LIN Y, et al. In situ fabrication of CoFe alloy nanoparticles structured ($\mathrm{Pr}_{0.4}~\mathrm{Sr}_{0.6}$)_3-

(Fe_{0.85} Nb_{0.15})₂O₇ ceramic anode for direct hydrocarbon solid oxide fuel cells[J]. Nano Energy, 2015, 11: 704-710.

- [16] CONNOR P A, YUE X, SAVANIU C D, et al. Tailoring SOFC electrode microstructures for improved performance[J]. Advanced Energy Materials, 2018, 8 (23): 1800120.
- [17] LEE Y H, REN H, WU E A, et al. All-sputtered, superior power density thin-film solid oxide fuel cells with a novel nanofibrous ceramic cathode [J]. Nano Lett, 2020, 20(5): 2943-2949.
- [18] TAO S, IRVINE J T. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nat Mater, 2003, 2(5): 320-323.
- [19] YANG L, XIE K, XU S, et al. Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis[J]. Dalton Trans, 2014, 43(37): 14147-14157.
- [20] LAN R, COWIN P I, SENGODAN S, et al. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells[J]. Sci Rep, 2016(6):31839.
- [21] MA M, QIAO J, YANG X, et al. Enhanced stability and catalytic activity on layered perovskite anode for high-performance hybrid direct carbon fuel cells [J].
 ACS Appl Mater Interfaces, 2020, 12 (11): 12938-12948.
- [22] SOLOVYEV A A, IONOV I V, SEMENOV V A, et al. Structural features of the magnetron sputtered CuO/GDC anodes for solid oxide fuel cells[J]. Journal of Physics: Conference Series, 2019, 1393: 012140.
- [23] PANG S, WANG W, CHEN T, et al. Systematic evaluation of cobalt-free Ln_{0.5} Sr_{0.5} Fe_{0.8}Cu_{0.2}O₃₋₈ (Ln= La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells [J]. Journal of Power Sources, 2016, 326: 176-181.
- [24] QIAO J, CHEN H, WANG Z, et al. Enhancing the catalytic activity of Y_{0.08} Sr_{0.92} TiO₃₋₈ Anodes through in situ Cu exsolution for direct carbon solid oxide fuel cells [J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13105-13112.
- [25] PARK S, KIM Y, HAN H, et al. In situ exsolved Co nanoparticles on ruddlesden-popper material as highly active catalyst for CO₂ electrolysis to CO[J]. Applied Catalysis B: Environmental, 2019, 248: 147-156.

In-situ fabrication of CoCu alloy nanoparticles decorated $PrSr(CoCu)_{0.2}Mn_{0.8}O_{4-\delta}$ ceramic anode materials

101

WANG Ziming1, TAN Ting1, SONG Chen2, LIU Taikai2, LIU Min2, YANG Chenghao1

 School of Environment and Energy, South China University of Technology, Guangzhou 510651, China;
 The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China

Abstract: In this paper, CoCu alloy (CCA) nanoparticles decorated ruddlesden-popper (RP) type layered perovskite PrSr (CoCu)_{0.2} $Mn_{0.8}$ O_{4- δ} (RP-PSCCM) ceramic anode has been in-situ reduction method. Crystal structure and morphology of the precipitated nanoparticles on the surface of the anode were confirmed by XRD and SEM. Conductivity of RP-PSCCM-CCA, polarization impedance of symmetric cell with RP-PSCCM-CCA anode in H₂ have been studied, the results indicate that RP-PSCCM-CCA shows a good catalytic activity. Moreover, the RP-PSCCM-CCA-GDC/LSGM/LSCF-GDC single cell exhibits a maximum power density of 696 mW/cm² at 800 °C, and excellent coking resistance in C₃ H₈. Overall, RP-PSCCM-CCA has been demonstrated as promising anode materials for SOFCs.

Key words: solid oxide fuel cell; anode; layered perovskite; alloy nanoparticles; In-situ exsolved