摘要
可再生电力驱动的电催化二氧化碳还原反应(CO2RR)能将CO2转化为具有经济价值的燃料和化学品,是实现“碳闭环”,达成“碳达峰”和“碳中和”的关键技术。CO2RR产物之一的甲酸(HCOOH)经济附加值是重要评价因素,以低耗能、高价值而获得学术和产业界的广泛关注。由于p区金属(如锡、铋、铟、和铅)能以高法拉第效率催化CO2RR而产生HCOOH,因此探究其催化机理和反应活性位点,能够为研发实用型催化剂和优化反应环境提供重要基础支撑。总结了原位观测技术在研究p区金属催化CO2RR机理和活性位点中的应用,常用的原位观测技术包括拉曼光谱、红外吸收光谱、X射线吸收谱和差分电化学质谱,借助原位观测技术不仅可以分析催化剂表面的化学成键、分子结构、结晶度等信息,还能在电位动态扫描过程中以毫秒的时间分辨对电化学反应产生的气态或易挥发产物,从而进行定性或定量分析。通过原位观测或工况条件下获取的实验数据确认CO2RR的催化成分,构建反应路径图,为进一步设计高性能、高稳定性的催化剂提供了必要条件。此外,合金化是改良催化剂性能的主要策略之一,简要讨论了p区金属合金化对电子结构、表面性质、催化效果的影响。通过总结原位观测技术对在p区金属催化研究的重要作用,为CO2RR工程化发展提供坚实基础和创新思路。
人类于工业革命后大规模使用化石燃料,导致大气中二氧化碳(CO2)含量不断上升。截至2023年底,大气中CO2含量已升至约422 pp

图1 碳循环示意
Figure 1 Schematic depiction of carbon cycle
电化学CO2RR的反应机理、催化机制、反应条件因素等基础问题已被逐步解决。已报道的CO2RR产物多达17
序号 | 半反应式 | 电位/V |
---|---|---|
1 | +→ | -1.49 |
2 | ++2→+ | -0.11 |
3 | ++2→HCOOH | -0.20 |
4 | ++4→HCHO+ | -0.10 |
5 | ++6→+ | 0.03 |
6 | ++12→+ | -0.77 |
7 | ++8→+ | 0.17 |
8 | ++8→+ | 0.14 |
9 | ++12→+ | 0.07 |
10 | +2→ | 0.00 |
本综述聚焦p区金属催化剂在CO2RR生成HCOOH过程中的基础问题,着重探讨原位或现场原位表征技术在基础研究中的应用。首先,介绍常用的电化学耦合现场原位表征技术,包括拉曼光谱(Raman spectroscopy, RS)、红外吸收光谱(Infrared absorption spectroscopy, IRAS)、X射线吸收谱(X-ray absorption spectroscopy, XAS)和差分电化学质谱(Differential electrochemical mass spectroscopy, DEMS)。其次,介绍现场原位表征技术研究p区金属催化CO2RR的典型案例,以及形成的重要结论。同时,结合理论计算,分析催化活性位点、反应中间产物及反应动力学。基于已有知识,简要讨论p区金属合金化策略带来的性能改变和可能的优化路径。最后,总结电催化CO2RR技术存在的挑战并予以展望。
电势能驱动物质偏离化学平衡态是电化学过程发生的必要条件。电催化材料,尤其是非贵金属类材料,在电势能驱动下发生成分或结构演化,产生了有别于稳定状态的新物质。非原位表征技术将无法准确描述催化剂的成分和结构信息,迫切需要在研究过程中引入多种原位或现场原位分析表征手段以获取催化剂的动态信息,为探究反应机理和优化催化剂性能提供可靠的实验支
RS基于物质对光子的非线性散射,能够探测分子的特征振动或转动模式,进而获取物质的化学成键、分子结构、结晶度等信
Ren

图2 现场原位RS电化学反应装置示意
Figure 2 Schematic depiction of operando RS electrochemical reaction device
IRAS是分子在共振频率对红外光的选频吸收谱,能分析分子结构和化学键,以及凝聚态物质的构象和构

图3 现场原位ATR-IRAS电化学反应装置示意
Figure 3 Schematic depiction of Operando ATR-IRAS electrochemical reaction device
XAS以同步辐射装置提供的高强度、可调波长X射线为入射光源,通过物质对X射线的特征吸收谱线,分析物质的空间结构和电子

图4 现场原位XAS电化学反应装置示意
Figure 4 Schematic depiction of operando XAS electrochemical reaction device
DEMS是将电化学反应池与质谱仪联用的技术,在电位动态扫描过程中能以毫秒的时间分辨率对电化学反应产生的气态或易挥发产物进行定性或定量分

图5 DEMS反应器示意
Figure 5 Schematic depiction of DEMS, sourced from reference
DEMS常用于分析可检测产物的起始生成电位,并定量分析多种产物的浓度;,通过结合电化学分析结果,可评价不同产物的法拉第效率(Faraday efficiency)。Wang
用于电催化CO2RR的p区金属主要为Sn、In、Bi和Pb,其金属或氧化物能选择性催化CO2生成甲酸根(HCO
Sn基材料用于电催化CO2RR可追溯至1994年,由Hori
金属Sn表面在空气中易被氧化为SnOx,如氧化亚锡(SnO)、氧化锡(SnO2)等。若CO2RR发生在pH中性的CO2饱和KHCO3溶液中,Pourbaix图显示随着电极电势下降,SnOx会从开路电位的SnO2还原至SnO,直至金属Sn。SnO2与Sn的标准电极电势为‒0.117 V (vs. NHE
2015年,Baruch

图6 SnOx的ATR-IRAS谱图及CO2RR的反应机理示意
Figure 6 ATR-IRAS spectra of SnOx and schematic diagram of the reaction mechanism of CO2RR
(a)—SnOx的ATR-IRAS数据;(b)—SnOx催化CO2RR的反应机理示意图。
(a)—operando ATR-IRAS data of SnOx;(b)—schematic depiction of the reaction mechanism of SnOx cata-
;lyzed CO2RR.

图7 Sn电极表面成分在CO2RR过程中的演化过
Figure 7 Evolution of the surface composition of a Sn electrode during CO2RR
(a)—SnO2电极表面成分演化过程的原位Raman图
法拉第效率之间的关
(a)—in situ Raman spectrum of the surface composition evolution process of SnO2 electrode; (b)—the relationship betw-
;een the surface state and Faraday efficiency of SnO2 electrodes in catalytic processes under different pH environments;
(c)—in situ XANES data of SnO2 electrode.
部分还原SnO2获得CO2RR催化活性表面已经成为共识,但活性表面成分仍存在争议。Ning

图8 CO2RR在不同界面的反应路径
Figure 8 Reaction pathway depiction of CO2RR at different interfaces
(a)—U= 0 V(vs. RHE)时2Sn@SnO2表面对*COOH、*OCHO和*H的吸附能变化;(b)—U=0 V(vs. RHE)
;时Sn(101)表面对*COOH、*OCHO和*H的吸附能变化。
(a)—when U=0 V(vs. RHE), 2Sn@SnO2 the changes in adsorption energy of *COOH, *OCHO, and *H on the surface are shown;(b)—changes in adsorption energy of Sn (101) surface for *COOH, *OCHO, and *H at U=
;0 V(vs. RHE).
目前,部分学者仍不认同SnOx是电催化CO2RR产HCOOH的活性成分。He
金属Bi电极催化CO2RR,首先由Komatsu
Sn基催化剂中的SnOx在CO2RR中的重要性早已被广泛报道。同属于p区金属的Bi,在早期研究中也被假设其催化活性来源于氧化物(BiOx

图9 现场原位ATR-IRAS与现场原位Raman研究Bi基电极在CO2RR过程中的演
Figure 9 Operando ATR-IRAS and operando Raman studies on the evolution of Bi based electrodes during CO2RR process
(a)—Bi薄膜电极在CO2RR不同电位下的现场原位ATR-IRAS光谱(每个光谱相差50 mV电位
(b)—(BiO)2CO3/ Bi2O3复合催化剂在CO2RR过程中的现场原位RS。
(a)—operando ATR-IRAS spectra of Bi thin film electrode at different CO2RR potentials(with each
;spectrum differing by 50 mV potential); (b)—operando RS of (BiO)2CO3/Bi2O3 composite catalyst
;in CO2RR process, sourced from reference.
2023年,Ren

图10 Bi-GDE在CO2RR下的拉曼热图及电流密度和法拉第效率
Figure 10 Heatmap of Raman spectra, current density, and Faraday efficiency of Bi-GDE catalyzed CO2RR
(a)—Bi-GDE在CO2RR下电位相关的拉曼热图;(b)—Bi-GDE在CO2RR不同电位下的电流密度和法拉第效率图。
(a)—potential dependent Raman thermogram of Bi GDE under CO2RR; (b)—current density and Faraday efficiency of Bi GDE at different potentials of CO2RR.
金属Bi不同晶面的CO2RR催化活性也是前沿课题。2023年,Yang

图11 在-1.15 V(vs. RHE)电位下的原位XRD图、原位XANES-BiL3边缘图谱、一阶导数热图和XANES线性拟合
Figure 11 Time-dependent operando XRD pattern of BiOx at -1.15 V(vs. RHE),and operando XANES- BiL3 spectra,first derivative heatmap,linear fitting results
(a)—BiOx与时间相关的原位XRD图;(b)—BiOBr随时间变化的原位XANES-BiL3边缘图谱;(c)—BiOBr与原位XANES BiL3边缘图谱相应的一阶导数热图;(d)—BiOx与时间相关的XANES线性拟合结果。
(a)—in situ XRD pattern of BiOx time-dependent at -1.15 V(vs. RHE) potential; (b)—in situ XANES-BiL3 edge
;map of BiOBr over time; (c)—the first derivative heatmap corresponding to the edge spectra of BiOBr and in-situ XA-
;NES BiL3; (d)—the linear fitting results of BiOx and time-dependent XANES.
大量原位表征技术支持Bi基催化剂表面在CO2RR环境中会生成(BiO2)CO
In电极的CO2RR催化效果与Sn电极相似。Hori
2014年,Detweiler

图12 InOOH纳米片原位生成的In基催化剂的性
Figure 12 Performance of In-based catalysts generated in situ from InOOH nanosheets
(a)—InOOH纳米片的循环伏安曲线;(b)—CO2RR的催化活性与In氧化还原峰的面积拟合数据;(c、d)—原
;位XRD热图与波纹图。
(a)—cyclic voltammetry curve of InOOH nanosheets; (b)—fit data between the catalytic activity of CO2RR and
;the area of the In redox peak; (c,d)—in situ XRD thermogram and ripple pattern.
Pb基催化剂因毒性而较少获得应用研究,已报道的工作主要是反应机理相关的基础研究。CO2RR在Pb电极表面的过电位高于其他p区金属电极,但HCOOH的法拉第效率并无劣
金属单质催化剂的表面电子结构相对确定,即使晶格应力、晶面取向、晶体结构等因素会影响其电子结构,进而影响反应中间产物的吸附能及反应动力
Sn的原子半径与电子结构,决定了其能与多种金属形成合金,被誉为“金属胶水
Sn-Bi合金能通过抑制H2和CO的形成来促进甲酸盐的生成。Ren
除了Sn基合金外,其他许多金属也被用于合成合金以提高催化效率。Cao
综上所述,p区金属通过合金化策略,优化了中间产物的吸附能、抑制了竞争反应、提升了催化剂稳定性,是开发高性能催化剂的可行路径,有望推动CO2RR产HCOOH的工业化进程。合金催化剂在CO2RR中的成分和结构演化、中间产物吸附状态、反应路径和动力学等基础问题,都迫切需要原位分析技术辅助寻找答案。
电催化CO2RR产HCOOH具有潜在的经济价值,是实现“碳闭环”的可行关键技术。p区金属(如Sn、Bi、In、和Pb)能以高法拉第效率催化CO2RR产HCOOH,解析其反应机理有助于改良、设计新型催化剂。原位观测技术帮助识别电化学状态下催化剂的表面活性位点,甚至催化中间产物,推动反应机理认知。现有技术聚焦催化界面的化学成键、物质成分和结构、近表面产物等,与DFT等理论计算相结合,能描绘出催化过程,在催化领域已经得到广泛的使用。然而,原位观测技术仍有局限性,如催化反应受催化剂表面若干原子层的调控,且反应进程受到界面环境影响。基于光吸收或非线性散射的表面表征技术提供更多体态信息,干扰表面态分析和判断。实验观测催化中间产物仍然极具挑战,而且至今尚缺乏近表面反应物和产物浓度分析方法。虽然表面分析方法均提供了反应稳态下的统计结果,但无法提供反应瞬态信息。
针对以上问题,原位观测技术需在时空分辨能力继续提升。例如引入超快分析方法,获取化学成键、声子传导、结构演化的即时信息。或采用表面更敏感的相互作用方式来表征电催化界面的物质信息,如借助SERS、TERS等获取反应中间产物信息。先进原位观测技术旨在探究催化活性物质及其反应机理,为开发实用型催化剂和优化反应环境提供重要基础支撑。
参考文献
HARRIS P G. Global ethics and climate change global climate change[M]. Edinburgh:Edinburgh University,2016: 17-28. [百度学术]
VOGT C, MONAI M, KRAMER G J, et al. The renaissance of the Sabatier reaction and its applications on earth and in space [J]. Nature Catalysis, 2019, 2(3): 188-197. [百度学术]
HEPBURN C, ADLEN E, BEDDINGTON J, et al. The technological and economic prospects for CO2 utilization and removal [J]. Nature, 2019, 575(7781): 87-97. [百度学术]
MIKKELSEN M, JØRGENSEN M, KREBS F C. The teraton challenge:A review of fixation and transformation of carbon dioxide [J]. Energy Environ Sci, 2010, 3(1): 43-81. [百度学术]
李双成, 王巧玲, 刘迎陆. “双碳”目标下的中国可再生能源发展:机遇与挑战[J]. 气候与环境研究, 2024, 29(3): 390-8. [百度学术]
卢冠初, WANG Z, BHATTI U, 等. 二氧化碳捕获技术的最新进展:综述[J]. 清洁能源科学与技术, 2023(1):1-42. [百度学术]
ÓBRIEN C P, MIAO R K, SHAYESTEH ZERAATI A, et al. CO2 electrolyzers [J]. Chemical Reviews, 2024, 124(7): 3648-3693. [百度学术]
DE LUNA P, HAHN C, HIGGINS D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J/OL]. Science, 2019, 364:6438. https://www.science.org/doi/10.1126/science.aav3506. [百度学术]
PETER S C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis [J]. ACS Energy Letters, 2018, 3(7): 1557-1561. [百度学术]
LONG C, LI X, GUO J, et al. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: recent progress and perspectives [J]. Small Methods, 2018, 3(3): 1800369. [百度学术]
QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels [J]. Chem Soc Rev, 2014, 43(2): 631-675. [百度学术]
WELCH A J, DUCHENE J S, TAGLIABUE G, et al. Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst [J]. ACS Applied Energy Materials, 2019, 2(1): 164-170. [百度学术]
KIM B, MA S, MOLLY JHONG H R, et al. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer [J]. Electrochimica Acta, 2015, 166:271-276. [百度学术]
HORI Y, WAKEBE H, TSUKAMOTO T, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media [J]. Electrochimica Acta, 1994, 39(11): 1833-1839. [百度学术]
DU S, YANG P, LI M, et al. Catalysts and electrolyzers for the electrochemical CO2 reduction reaction: From laboratory to industrial applications [J]. Chem Commun, 2024, 60(10): 1207-1221. [百度学术]
KORTLEVER R, SHEN J, SCHOUTEN K J, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide [J]. J Phys Chem Lett, 2015, 6(20): 4073-4082. [百度学术]
KIBRIA M G, EDWARDS J P, GABARDO C M, et al. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design [J]. Adv Mater, 2019, 31(31): e1807166. [百度学术]
PANDER J E, BARUCH M F, BOCARSLY A B. Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry [J]. ACS Catalysis, 2016, 6(11): 7824-7833. [百度学术]
JIN S, HAO Z, ZHANG K, et al. Advances and challenges for the electrochemical reduction of CO2 to CO:From fundamentals to industrialization [J]. Angew Chem Int Ed Engl, 2021, 60(38): 20627-20648. [百度学术]
SONG X, XU L, SUN X, et al. In situ/operando characterization techniques for electrochemical CO2 reduction [J]. Science China Chemistry, 2023, 66(2): 315-323. [百度学术]
ZOU Y, WANG S. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design [J]. Adv Sci (Weinh), 2021, 8(9): 2003579. [百度学术]
CHEN Z, WANG X, MILLS J P, et al. Two-dimensional materials for electrochemical CO2 reduction: Materials, in situ/operando characterizations, and perspective [J]. Nanoscale, 2021, 13(47): 19712-19739. [百度学术]
LONG L, JU W, YANG H Y, et al. Dimensional design for surface-enhanced raman spectroscopy [J]. ACS Mater Au, 2022, 2(5): 552-75. [百度学术]
HEIDARY N, LY K H, KORNIENKO N. Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectroscopy [J]. Nano Lett, 2019, 19(8): 4817-26. [百度学术]
杨金梅, 张海明, 王旭,等. 红外光谱和拉曼光谱的联系和区别[J]. 物理与工程, 2014, 24(4): 26-29. [百度学术]
REN B, LI X Q, SHE C X, et al. Surface Raman spectroscopy as a versatile technique to study methanol oxidation on rough Pt electrodes [J]. Electrochimica Acta, 2000, 46(2): 193-205. [百度学术]
CHEN J, MA B, XIE Z, et al. Bifunctional porous SnO2/Ag nanofibers for efficient electroreduction of carbon dioxide to formate and its mechanism elucidation by in-situ surface-enhanced Raman scattering [J]. Applied Catalysis B: Environmental, 2023, 325:122350. [百度学术]
YEO B S, KLAUS S L, ROSS P N, et al. Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold [J]. Chemphyschem, 2010, 11(9): 1854-1857. [百度学术]
YEO B S, BELL A T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen [J]. Journal of the American Chemical Society, 2011, 133(14): 5587-5593. [百度学术]
YEO B S, BELL A T. In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen [J]. The Journal of Physical Chemistry C, 2012, 116(15): 8394-8400. [百度学术]
ZENG Z C, HU S, HUANG S C, et al. Novel electrochemical raman spectroscopy enabled by water immersion objective [J]. Anal Chem, 2016, 88(19): 9381-9385. [百度学术]
LI J F, ZHANG Y J, DING S Y, et al. Core-shell nanoparticle-enhanced raman spectroscopy [J/OL]. Chemical Reviews, 2017, 117(7): 5002-5069. https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00596. [百度学术]
LIN X D, LI J F, HUANG Y F, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy: Nanoparticle synthesis, characterization and applications in electrochemistry [J/OL]. Journal of Electroanalytical Chemistry, 2013, 688:5-11. https://linkinghub.elsevier.com/retrieve/pii/S1572665712002718. [百度学术]
NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275(5303): 1102-1106. [百度学术]
TAFAZOLI S, YUSUFOĞLU M, BALKAN T, et al. In-situ surface enhanced Raman spectroscopy investigations on surface transformations of oxide derived copper electrodes during CO2RR [J]. Journal of Catalysis, 2023, 423:118:128. [百度学术]
LIU H, QI Z, SONG L. In situ electrocatalytic infrared spectroscopy for dynamic reactions [J]. The Journal of Physical Chemistry C, 2021, 125(44): 24289-24300. [百度学术]
MOSS D, NABEDRYK E, BRETON J, et al. Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry:Evaluation of the technique with cytochrome C [J]. Eur J Biochem, 1990, 187(3): 565-572. [百度学术]
KATO Y, NOGUCHI T. Long-range interaction between the Mn4CaO5 cluster and the non-heme iron center in photosystem ii as revealed by FTIR spectroelectrochemistry [J]. Biochemistry, 2014, 53(30): 4914-4923. [百度学术]
TUTUNEA F, RYAN M D. Visible and infrared spectroelectrochemistry of cobalt porphinones and porphinediones [J]. Journal of Electroanalytical Chemistry, 2012, 670:16-22. [百度学术]
DAI Y, PROSHLYAKOV D A, ZAK J K, et al. Optically transparent diamond electrode for use in IR transmission spectroelectrochemical measurements [J]. Analytical Chemistry, 2007, 79(19): 7526-7533. [百度学术]
ALWIS L K H K, MUCALO M R, INGHAM B. Anodically polarized nickel electrodes in DMSO or DMF solutions of pseudohalide ions: IR spectroelectrochemical studies [J]. Journal of the Electrochemical Society, 2013, 160(11): H803-H812. [百度学术]
LIU L, ZENG L, WU L, et al. Label-free surface-enhanced infrared spectroelectrochemistry studies the interaction of cytochrome C with cardiolipin-containing membranes [J]. The Journal of Physical Chemistry C, 2015, 119(8): 3990-3999. [百度学术]
HANDOKO A D, WEI F, JENNDY, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques [J]. Nature Catalysis, 2018, 1(12): 922-934. [百度学术]
WAIN A J, ÓCONNELL M A. Advances in surface-enhanced vibrational spectroscopy at electrochemical interfaces [J]. Advances in Physics: X, 2017, 2(1): 188-209. [百度学术]
GLASSFORD S E, BYRNE B, KAZARIAN S G. Recent applications of ATR FTIR spectroscopy and imaging to proteins [J]. Biochim Biophys Acta, 2013, 1834(12): 2849-2858. [百度学术]
KRETSCHMANN E. Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen[J]. Zeitschrift Für Physik A Hadrons and Nuclei, 1971, 241(4): 313-324. [百度学术]
BARUCH M F, PANDER J E, WHITE J L, et al. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy [J/OL]. ACS Catalysis, 2015, 5(5): 3148-3156. https://pubs.acs.org/doi/10.1021/acscatal.5b00402. [百度学术]
BARUCH M F, PANDER J E, WHITE J L, et al. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy [J]. ACS Catalysis, 2015, 5(5): 3148-3156. [百度学术]
CAO X, WULAN B, WANG Y, et al. Atomic bismuth induced ensemble sites with indium towards highly efficient and stable electrocatalytic reduction of carbon dioxide [J]. Sci Bull (Beijing), 2023, 68(10): 1008-1016. [百度学术]
DUTTA A, KUZUME A, KALIGINEDI V, et al. Probing the chemical state of tin oxide NP catalysts during CO2 electroreduction: A complementary operando approach [J]. Nano Energy, 2018, 53:828-840. [百度学术]
WU Z, WU H, CAI W, et al. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH [J]. Angew Chem Int Ed Engl, 2021, 60(22): 12554-12559. [百度学术]
XIAO L, LIU X, ZHOU R, et al. Facile synthesis of high-performance indium nanocrystals for selective CO2-to-formate electroreduction [J]. Energy Conversion and Management, 2021, 231: 113847. [百度学术]
TIMOSHENKO J, ROLDAN CUENYA B. In Situ/operando electrocatalyst characterization by X-ray absorption spectroscopy [J]. Chem Rev, 2021, 121(2): 882-961. [百度学术]
YANG Y, WANG Y, XIONG Y, et al. In situ X-ray absorption spectroscopy of a synergistic Co-Mn oxide catalyst for the oxygen reduction reaction [J]. J Am Chem Soc, 2019, 141(4): 1463-1466. [百度学术]
CHANG C J, ZHU Y, WANG J, et al. In situ X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions [J]. Journal of Materials Chemistry A, 2020, 8(37): 19079-19112. [百度学术]
BENFATTO M, MENEGHINI C. A close look into the low energy region of the XAS spectra: The XANES region [M]. Heidelberg:Springer Berlin Heidelberg,2015: 213-240. [百度学术]
TSAPATSARIS N, BEESLEY A M, WEIHER N, et al. High throughput in situ XAFS screening of catalysts [M]. AIP Publishing:AIP Conference Proceedings,2007: 597-599. [百度学术]
BORDIGA S, GROPPO E, AGOSTINI G, et al. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques [J]. Chemical Reviews, 2013, 113(3): 1736-1850. [百度学术]
WENG Z, WU Y, WANG M, et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction [J]. Nat Commun, 2018, 9(1): 415. [百度学术]
MISTRY H, VARELA A S, BONIFACIO C S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene [J]. Nat Commun, 2016, 7:12123. [百度学术]
HE F, CHEN W, CHEN J Q, et al. The effect of water on the quantification of volatile species by differential electrochemical mass spectrometry [J]. Anal Chem, 2021, 93(13): 5547-5555. [百度学术]
MORA-HERNANDEZ J M, GONZÁLEZ-SUáREZ W I, MANZO-ROBLEDO A, et al. A comparative differential electrochemical mass spectrometry (DEMS) study towards the CO2 reduction on Pd, Cu, and Sn -based electrocatalyst [J]. Journal of CO2 Utilization, 2021, 47: 101504. [百度学术]
SANTIAGO-RAMíREZ C R, VERA-ITURRIAGA J, DEL ANGEL P, et al. DEMS and RAMAN study of the monatomic hydrogen adsorption during electro-reduction of NO3- and NO2- at Pt nanoparticles supported at W18O49-ZrO2-C nanocomposite [J/OL]. Applied Catalysis B: Environmental, 2021, 282:119545. https://linkinghub.elsevier.com/retrieve/pii/S0926337320309607. [百度学术]
WANG X, KLINGAN K, KLINGENHOF M, et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction [J]. Nat Commun, 2021, 12(1): 794. [百度学术]
BALTRUSCHAT H. Differential electrochemical mass spectrometry [J]. J Am Soc Mass Spectrom, 2004, 15(12): 1693-1706. [百度学术]
ABD-EL-LATIF A A, BONDUE C J, ERNST S, et al. Insights into electrochemical reactions by differential electrochemical mass spectrometry [J]. TrAC Trends in Analytical Chemistry, 2015, 70:4-13. [百度学术]
ZHAO K, JIANG X, WU X, et al. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions [J]. Chem Soc Rev, 2024, 53(13): 6917-6959. [百度学术]
FEASTER J T, SHI C, CAVE E R, et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes [J/OL]. ACS Catalysis, 2017, 7(7): 4822-4827. https://pubs.acs.org/doi/10.1021/acscatal.7b00687. [百度学术]
CHENG F, ZHANG X, MU K, et al. Recent progress of Sn-based derivative catalysts for electrochemical reduction of CO2 [J]. Energy Technology, 2020, 9(1): 2000799. [百度学术]
CHENG W, XU X, LIAO Q, et al. In situ dynamic re-structuring and interfacial evolution of SnS2 for high-performance electrochemical CO2 reduction to formate [J]. Chemical Engineering Journal, 2024, 480:147922. [百度学术]
DENG Y, ZHAO J, WANG S, et al. Operando spectroscopic analysis of axial oxygen-coordinated single-sn-atom sites for electrochemical CO2 reduction [J]. Journal of the American Chemical Society, 2023, 145(13): 7242-7251. [百度学术]
BARUCH M F, PANDER J E, WHITE J L, et al. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy [J]. ACS Catalysis, 2015, 5(5): 3148-3156. [百度学术]
CHEN Y, KANAN M W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts [J/OL]. Journal of the American Chemical Society, 2012, 134(4): 1986-1989 . https://pubs.acs.org/doi/10.021/ja2108799. [百度学术]
DUTTA A, KUZUME A, RAHAMAN M, et al. Monitoring the chemical state of catalysts for CO2 electroreduction: An in operando study [J/OL]. ACS Catalysis, 2015, 5(12): 7498-7502. https://pubs.acs.org/doi/10.1021/acscatal.5b02322. [百度学术]
JING H, ZHAO P, LIU C, et al. Surface-enhanced raman spectroscopy for boosting electrochemical CO2 reduction on amorphous-surfaced tin oxide supported by MXene [J]. ACS Appl Mater Interfaces, 2023, 15(51): 59524-59533. [百度学术]
NING S, WANG J, XIANG D, et al. Electrochemical reduction of SnO2 to Sn from the bottom: In-situ formation of SnO2/Sn heterostructure for highly efficient electrochemical reduction of carbon dioxide to formate [J/OL]. Journal of Catalysis, 2021, 399:67-74. https://linkinghub.elsevier.com/retrieve/pii/S0021951721001809. [百度学术]
SALVINI C, RE FIORENTIN M, RISPLENDI F, et al. Active surface structure of SnO2 catalysts for CO2 reduction revealed by ab initio simulations [J/OL]. The Journal of Physical Chemistry C, 2022, 126(34): 14441-14447.https://creativecommons.org/licenses/by/4.0/. [百度学术]
POURBAIX M, BURBANK J. Atlas D-equilibres electrochimiques [J]. Journal of the Electrochemical Society, 1964, 111(1): 14C. [百度学术]
LEE S, OCON J D, SON Y I, et al. Alkaline CO2 electrolysis toward selective and continuous HCOO- production over SnO2 nanocatalysts [J]. The Journal of Physical Chemistry C, 2015, 119(9): 4884-4890. [百度学术]
CHEN Y, KANAN M W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts [J]. J Am Chem Soc, 2012, 134(4): 1986-1989. [百度学术]
DUTTA A, KUZUME A, RAHAMAN M, et al. Monitoring the chemical state of catalysts for CO2 electroreduction: An in operando study [J]. ACS Catalysis, 2015, 5(12): 7498-7502. [百度学术]
NING S, WANG J, XIANG D, et al. Electrochemical reduction of SnO2 to Sn from the bottom: In-situ formation of SnO2/Sn heterostructure for highly efficient electrochemical reduction of carbon dioxide to formate [J]. Journal of Catalysis, 2021, 399:67-74. [百度学术]
DENG W, ZHANG L, LI L, et al. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction [J]. J Am Chem Soc, 2019, 141(7): 2911-2915. [百度学术]
HE M, XU B, LU Q. Probing the role of surface speciation of tin oxide and tin catalysts on CO2 electroreduction combining in situ Raman spectroscopy and reactivity investigations [J]. Chinese Journal of Catalysis, 2022, 43(6): 1473-1477. [百度学术]
KOMATSU S, YANAGIHARA T, HIRAGA Y, et al. Electrochemical reduction of CO2 at Sb and Bi Electrodes in KHCO3 solution [J]. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1995, 63(3): 217-224. [百度学术]
DIMEGLIO J L, ROSENTHAL J. Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst [J]. Journal of the American Chemical Society, 2013, 135(24): 8798-8801. [百度学术]
MEDINA-RAMOS J, DIMEGLIO J L, ROSENTHAL J. Efficient reduction of CO2 to CO with high current density using in situ or EX situ prepared bi-based materials [J]. Journal of the American Chemical Society, 2014, 136(23): 8361-8367. [百度学术]
HAYNES W M. Handbook of chemistry and physics [M]. CRC Press: Boca Raton, 2016. [百度学术]
GREELEY J, JARAMILLO T F, BONDE J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J]. Nature Materials, 2006, 5(11): 909-913. [百度学术]
YANG Z, OROPEZA F E, ZHANG K H L. P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate [J/OL]. APL Materials, 2020, 8(6): 60901. https://pubs.aip.org/apm/article/8/6//1062388/P-block-metal-based-Sn-In-Bi-Pb-electrocatalysts. [百度学术]
DENG P, WANG H, QI R, et al. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate [J]. ACS Catalysis, 2020, 10(1): 743-750. [百度学术]
LI F, GU G H, CHOI C, et al. Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2 [J]. Applied Catalysis B: Environmental, 2020, 277:119241. [百度学术]
WALKER R J, POUGIN A, OROPEZA F E, et al. Surface termination and CO2 adsorption onto bismuth pyrochlore oxides [J]. Chemistry of Materials, 2016, 28(1): 90-96. [百度学术]
DUTTA A, ZELOCUALTECATL MONTIEL I, KIRAN K, et al. A tandem (Bi2O3→Bimet) catalyst for highly efficient ec-CO2 conversion into formate: Operando raman spectroscopic evidence for a reaction pathway change [J]. ACS Catalysis, 2021, 11(9): 4988-5003. [百度学术]
REN H, WANG X, ZHOU X, et al. In-situ constructing Cu1Bi1 bimetallic catalyst to promote the electroreduction of CO2 to formate by synergistic electronic and geometric effects [J]. Journal of Energy Chemistry, 2023, 79:263-271. [百度学术]
ZENG J, MONTI N B D, CHEN T, et al. Evolution of bismuth electrodes activating electrosynthesis of formate from carbon dioxide reduction [J]. Catalysis Today, 2024, 437:114743. [百度学术]
YANG S, AN H, ARNOUTS S, et al. Halide-guided active site exposure in bismuth electrocatalysts for selective CO2 conversion into formic acid [J]. Nature Catalysis, 2023, 6(9): 796-806. [百度学术]
AVILA-BOLIVAR B, LOPEZ LUNA M, YANG F, et al. Revealing the Intrinsic restructuring of Bi2O3 nanoparticles into Bi nanosheets during electrochemical CO2 reduction [J]. ACS Appl Mater Interfaces, 2024, 16(9): 11552-11560. [百度学术]
AN X, LI S, HAO X, et al. The in situ morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide [J]. Sustainable Energy & Fuels, 2020, 4(6): 2831-2840. [百度学术]
LIANG X D, ZHENG Q Z, WEI N, et al. In-situ constructing Bi@Bi2O2CO3 nanosheet catalyst for ampere-level CO2 electroreduction to formate [J]. Nano Energy, 2023, 114:108638. [百度学术]
DETWEILER Z M, WHITE J L, BERNASEK S L, et al. Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte [J]. Langmuir, 2014, 30(25): 7593-7600. [百度学术]
MA L, LIU N, MEI B, et al. In Situ-activated indium nanoelectrocatalysts for highly active and selective CO2 electroreduction around the thermodynamic potential [J]. ACS Catalysis, 2022, 12(14): 8601-8609. [百度学术]
HORI Y, KIKUCHI K, SUZUKI S. Production of co and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution [J]. Chemistry Letters, 2006, 14(11): 1695-1698. [百度学术]
BACK S, KIM J H, KIM Y T, et al. On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction [J]. Phys Chem Chem Phys, 2016, 18(14): 9652-9657. [百度学术]
ZHAO C X, BU Y F, GAO W, et al. CO2 reduction mechanism on the Pb(111) surface: Effect of solvent and cations [J]. The Journal of Physical Chemistry C, 2017, 121(36): 19767-19773. [百度学术]
LEE C H, KANAN M W. Controlling
WANG D, ZHANG X, SHEN Y, et al. Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts [J]. RSC Advances, 2016, 6:16656-16661. [百度学术]
SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design [J/OL]. Science, 2017, 355(6321): eaad4998. https://www.science.org/doi/10.1126/science.aad4998. [百度学术]
HONG W T, RISCH M, STOERZINGER K A, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis [J]. Energy & Environmental Science, 2015, 8(5): 1404-1427. [百度学术]
MAN I C, SU H Y, CALLE-VALLEJO F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces [J]. Chem Cat Chem, 2011, 3(7): 1159-1165. [百度学术]
MATTAROZZI L, CATTARIN S, COMISSO N, et al. Electrodeposition of compact and porous Cu-Zn alloy electrodes and their use in the cathodic reduction of nitrate [J/OL]. Journal of the Electrochemical Society, 2015, 162(6): D236-D241. https://iopscience.iop.org/article/10.1149/2.1041506jes. [百度学术]
PANDAY M, UPADHYAY G K, PUROHIT L P. Sb incorporated SnO2 nanostructured thin films for CO2 gas sensing and humidity sensing applications [J/OL]. Journal of Alloys and Compounds, 2022, 904:164053. https://linkinghub.elsevier.com/retrieve/pii/S0925838822004443. [百度学术]
PARK S, KIM W. Advancing electrochemical CO reduction: Insights from operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy analysis [J]. Current Opinion in Electrochemistry, 2024, 45:101515. [百度学术]
REN B, WEN G, GAO R, et al. Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction [J/OL]. Nature Communications, 2022, 13(1): 2486. https://www.nature.com/articles/s41467-022-29861-w. [百度学术]
WANG Y, XU A, WANG Z, et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption [J/OL]. Journal of the American Chemical Society, 2020, 142(12): 5702-5708. https://pubs.acs.org/doi/10.1021/jacs.9b13347. [百度学术]
ZHENG T, LIU C, GUO C, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying [J/OL]. Nature Nanotechnology, 2021, 16(12): 1386-1393. https://www.nature.com/articles/s41565-021-00974-5. [百度学术]
ZHANG J, WANG X Q, SU T, et al. Calculation of thermic and electric properties and valence electron structure for metallic electrodes of Na||Sb-Pb-Sn liquid metal battery [J]. Acta Physica Sinica, 2021, 70(8): 83101-83110. [百度学术]
MÁCOVÁ Z, BOUZEK K, ŠERÁK J. Electrocatalytic activity of copper alloys for NO3 reduction in a weakly alkaline solution: Part 2: Copper-tin [J/OL]. Journal of Applied Electrochemistry, 2007, 37(5): 557-566. https://link.springer.com/10.1007/s10800-006-9287-8. [百度学术]
REN B, WEN G, GAO R, et al. Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction [J]. Nat Commun, 2022, 13(1): 2486. [百度学术]
HE J, DETTELBACH K E, HUANG A, et al. Brass and bronze as effective CO2 reduction electrocatalysts [J]. Angew Chem Int Ed Engl, 2017, 56(52): 16579-16582. [百度学术]
JIANG S, D’AMARIO L, DAU H. Copper carbon-ate hydroxide as precursor of interfacial CO in CO2 electroreduction [J]. Chem Sus Chem,2022, 15:e202102506. [百度学术]
WANG J, ZOU J, HU X, et al. Heterostructured intermetallic CuSn catalysts: High performance towards the electrochemical reduction of CO2 to formate [J]. Journal of Materials Chemistry A, 2019, 7(48): 27514-27521. [百度学术]
ZENG J, BEJTKA K, JU W, et al. Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution [J]. Applied Catalysis B: Environmental, 2018, 236:475-482. [百度学术]
JU W, JIANG F, MA H, et al. Electrocatalytic reduction of gaseous CO2 to CO on Sn/Cu-nanofiber-based gas diffusion electrodes [J]. Advanced Energy Materials, 2019, 9(32): 1901514. [百度学术]
SARFRAZ S, GARCIA-ESPARZA A T, JEDIDI A, et al. Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO [J]. ACS Catalysis, 2016, 6(5): 2842-2851. [百度学术]
YAO T, HAN S, XIA W, et al. Atomic indium-doped copper-based catalysts for electrochemical CO2 reduction to C2+ products [J]. Chem Cat Chem, 2024, 2024:e202400137. [百度学术]
CUI R, YUAN Q, ZHANG C, et al. Revealing the behavior of interfacial water in Te-doped Bi via operando infrared spectroscopy for improving electrochemical CO2 reduction [J]. ACS Catalysis, 2022, 12(18): 11294-11300. [百度学术]