摘要
以单质硫为正极材料的锂硫电池(LSBs),因其高的理论比容量和能量密度,在储能领域中受到广泛地关注。然而,LSBs在充放电过程中会产生可溶性多硫化物(LiPSs),LiPSs在电极之间的穿梭效应会导致电池容量快速衰减,从而阻碍LSBs的实际应用。为了有效地抑制LiPSs在LSBs中的穿梭效应,设计合成了一种基于联吡啶共价有机框架(COFs)材料的纳米片(Tp-Bpy),并将其用作LSBs的多功能插层。Tp-Bpy纳米片得益于联吡啶中均匀分散的氮位点的强吸附和催化活性,以及其纳米结构可提供更多活性位点等特性,能够很好地吸附LiPSs,并对LiPSs进行催化转化,从而抑制LiPSs的穿梭效应。Tp-Bpy纳米片插层在LiPSs氧化还原反应过程中具有更快的转化动力学,以及降低液固转化过程的电化学极化特性。相较于未修饰的传统聚丙烯(PP)隔膜,Tp-Bpy纳米片插层所组装的LSBs倍率性能和循环稳定性得到明显提升。实验结果表明,以Tp-Bpy纳米片插层所组装的LSBs,在0.1 C下的放电初始容量可达1 223 mAh∙
随着便携式电子设备和新能源汽车的快速发展,对储能设备的需求也在不断增
近年来,研究者们主要从正极、隔膜、负极和电解液等方面进行设计优化,以缓解LiPSs穿梭效
共价有机框架材料(Covalent organic frameworks,COFs),是由C、H、O、N和S等元素通过共价键连接形成具有周期性结构的多孔聚合物。由于COFs的结构设计性、高孔隙率和理化性质稳定等特点,近年来已在催化、气体吸附和电解质膜等众多领域中得到成功地应
由于催化长链多硫化物转化为短链硫化锂的反应发生在表界面,而2D COFs可以暴露出更多的活性位点,从而能更好地参与电化学反应。因此,通过设计合成了一种具有联吡啶结构的COFs纳米片(Tp-Bpy)。将Tp-Bpy与导电碳混合后均匀地涂附在PP隔膜上,作为插层对LiPSs进行捕获,在氧化还原反应过程中实现有效的催化转化,缓解LiPSs的穿梭效应。结果表明,含有Tp-Bpy纳米片插层所组装的LSBs具有优异的倍率性能及循环稳定性。
首先,称取55.8 mg的二氨基联吡啶(5,5′- Diamino-2,2′-bipyridine,Bpy)和42 mg的三醛基间苯三酚(2,4,6-triformylphloroglucinol,Tp),将二者放入150 mL的耐压管中,再向混合物中加入N,N-二甲基甲酰胺(6.0 mL)、邻二氯苯(6.0 mL)和浓度为6 mol∙

图1 Tp-Bpy纳米片的合成示意图
Figure 1 Schematic illustration of the synthesis of Tp-Bpy nanosheets
采用简单熔融扩散法制备正极材料。首先将碳纳米管(Carbon nanotube,CNT)与硫(Sulfur,S)按照质量比1∶3混合,然后在密封的高压釜中155 ℃下加热12 h,最终得到CNT/S复合材料。将CNT/S复合材料(质量分数80%)、CNT(质量分数10%)和聚偏二氟乙烯(PVDF,质量分数10%)分散在N-甲基吡咯烷酮(NMP)溶液中,待搅拌均匀后涂附在集流体上,获得载硫量约为1.5 mg∙c
将质量分数60%的Tp-Bpy、质量分数30%的石墨烯(Graphene)和质量分数10%的PVDF分散在NMP中,剧烈搅拌以制备浆料。用刮刀将制备的浆料涂附在PP隔膜(Celgard 2400)上,待其干燥后获得Tp-Bpy纳米片插层(质量约为0.3 mg∙c

图2 Tp-Bpy纳米片插层的锂硫电池示意图
Figure 2 The structure of LSBs containing Tp-Bpy nanosheets interlayer
利用Neware电池测试系统进行恒电流充放电测试,其放电、充电的截止电压分别为1.7 和2.8 V。使用电化学工作站(Autolab 302N)进行循环伏安(Cyclic voltammetry,CV)测试,扫描速率为0.1 mV∙
为了确定Tp-Bpy纳米片的晶相,对其进行X射线衍射(Powder X-ray diffraction,PXRD)测试,结果如

图3 Tp-Bpy纳米片的PXRD图
Figure 3 PXRD patterns of Tp-Bpy nanosheets
采用Brunauer-Emmett-Teller(BET)测量法,在温度77 K下测量氮吸附,以研究Tp-Bpy纳米片的比表面积和孔隙率,结果如

图4 Tp-Bpy纳米片的N2吸附/脱附曲线及孔径分布
Figure 4 N2 adsorption/desorption isotherms and pore size distribution of the Tp-Bpy nanosheets
(a)—N2吸附/脱附曲线;(b)—孔径分布图。
(a)—N2 adsorption/desorption isotherms;(b)—pore size distribution.
通过扫描电子显微镜(Scanning electron microscope,SEM)对Tp-Bpy纳米片进行了形貌的表征,结果如

图5 Tp-Bpy纳米片的SEM图及Tp-Bpy纳米片胶体悬浮液的Tyndall效应图
Figure 5 SEM image of the Tp-Bpy nanosheets and image of the Tyndall effect of the colloidal suspension of Tp-Bpy nanosheets
(a)—SEM图;(b)—Tyndall效应。
(a)—SEM image;(b)—the Tyndall effect.
为了研究Tp-Bpy纳米片对Li2S6的捕获能力,将一定量的Tp-Bpy纳米片浸泡在4 mL浓度为5×1

图6 Tp-Bpy纳米片吸附Li2S6前后的光学照片及UV-vis光谱
Figure 6 Optical photographs and UV-vis spectra of Li2S6 solution before and after adsorption with Tp-Bpy nanosheets
(a)—光学照片;(b)—UV-vis光谱。
(a)—optical photographs;(b)—UV-vis spectra.
为了揭示Tp-Bpy纳米片对LiPSs转化过程中氧化还原动力学的影响,以Li2S6溶液作为电解液,以涂有Tp-Bpy纳米片的极片为电极,组装对称电池。作为对比,进行了空白的对称电池组装测试。

图7 涂有Tp-Bpy纳米片对称电池的CV曲线和计时电流曲线
Figure 7 CV curves and chronoamperometry curves of symmetric cells assembled with Tp-Bpy nano-sheets coated electrodes
(a)—CV曲线;(b)—计时电流曲线。
(a)—CV curves;(b)—chronoamperometry curves.
为了进一步探究Tp-Bpy纳米片在LSBs实际充放电过程中的作用,组装了扣式电池,其中正极为碳纳米管与单质硫(质量比3∶1)熔融扩散的复合材料(CNT/S)。对CNT/S进行了热重分析(Thermal gravimetric analysis,TGA),结果如

图8 CNT/S的热重曲线
Figure 8 TGA curves of CNT/S

图9 Tp-Bpy纳米片插层膜的SEM图
Figure 9 SEM image of the Tp-Bpy nanosheet interlayer

图10 Tp-Bpy纳米片插层、Graphene插层和PP隔膜组装LSBs的CV曲线
Figure 10 CV curves of LSBs with Tp-Bpy interlayer, Graphene interlayer and PP
Tp-Bpy纳米片对多硫化物表现出良好的吸附性能,而且在一定程度上催化LiPSs的转化。为了评估Tp-Bpy纳米片插层的吸附和催化特性对LSBs性能的提升,对LSBs进行了系统地恒流充放电试验研究。在1.5 mg∙c

图11 LSBs的倍率性能及长循环性能
Figure 11 Electrochemical performances and long-term cycle performances of LSBs assembled
(a)—倍率性能;(b)—长循环性能。
(a)—electrochemical performances;(b)—long-term cycle performances.
化合物 | 初始容量/(mAh∙ | 循环次数/次 | 电流速率/C | 衰减率/% | 载硫量/(mg∙c | 参考文献 |
---|---|---|---|---|---|---|
S@CTFO | 790 | 300 | 1 | 0.117 | 1.0 |
[ |
SCOF | 782 | 600 | 1 | 0.067 | 1.0 |
[ |
FMCTF-S | 681 | 400 | 1 | 0.090 | 1.2 |
[ |
Por-COF/S | 670 | 200 | 1 | 0.160 | 1.8 |
[ |
2D Tp-Bpy | 848 | 500 | 1 | 0.093 | 1.5 | 本研究 |
本文通过设计合成出具有联吡啶结构的二维共价有机框架材料Tp-Bpy纳米片,将其作为LSBs的多功能插层,使LSBs的倍率性能和循环稳定性得到明显提升。基于Tp-Bpy插层隔膜对LiPSs展现出优异的物理吸附/催化转化的协同作用,表明其可以有效地抑制LiPSs穿梭效应。相比于PP隔膜的LSBs,Tp-Bpy纳米片插层组装的LSBs表现出更优异的倍率性能(0.1 C的放电初始容量可达1 223 mAh∙
参考文献
何天贤,顾凤龙.固态电解质的理论计算与实验研究进展述评[J].材料研究与应用,2022, 15(2):165-177. [百度学术]
伍鹏,郭盼龙,潘跃得,等.高镍正极材料LiNi0.83Co0.12-Mn0.05O2双包覆改性及软包锂离子电池应用研究 [J].材料研究与应用,2022, 16(5): 812-818. [百度学术]
WANG J F, PANCHAL A, CANEPA P, et al. Strategies for fitting accurate machine-learned inter-atomic potentials for solid electrolytes [J]. Materials Futures, 2023, 2(1): 15101. [百度学术]
陈通,张伟,王学文.一种简单溶剂热法合成海胆状硫化铋用于钾离子电池负极材料[J].材料研究与应用, 2022, 15(3): 196-202. [百度学术]
陈跃颖,盘盈滢,杜文卿,等.金属-有机框架在锂离子电池电极材料中的应用[J].材料研究与应用,2022, 16: 68-80. [百度学术]
ZANG X L, JIANG Y Q, CHAI Y Q, et al. Tunable metallic-like transport in polypyrrole [J]. Materials Futures, 2022, 1(1): 11001. [百度学术]
李志斌,黎晋良,马良,等.基底材料改性增强钾金属负极电池的研究进展[J].材料研究与应用,2022, 16(1): 174-182. [百度学术]
MANTHIRAM A, FU Y, SU Y S, et al. Rechargeable lithium-sulfur batteries [J]. Chemcal Reviews, 2014, 114: 11751-11787. [百度学术]
ZHENG Y, ZHENG S, PANG H, et al. Metal-organic frameworks for lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2019, 7: 3469-3491. [百度学术]
LEI J, LIU T, DONG Q, et al. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries [J]. Chem, 2020, 6: 2533-2557. [百度学术]
ZENG Q H, ZHANG Q, HUANG S M, et al. Copolymerization of sulfur chains with vinyl functionalized metal-organic framework for accelerating redox kinetics in lithium-sulfur batteries [J]. Advanced Energy Materials, 2022, 12: 2104074. [百度学术]
XIAO Y B, ZHANG Q, HUANG S M, et al. Regulating coordination environment in metal-organic frameworks for adsorption and redox conversion of polysulfides in lithium-sulfur batteries [J]. ACS Materials Letters, 2021, 3: 1684-1694. [百度学术]
WEI J Y, ZHANG X Q, HUANG J Q, et al. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries [J]. Advanced Materials, 2020, 32: 2003012. [百度学术]
JIANG C, LI L, WANG C, et al. In situ synthesis of organopolysulfides enabling spatial and kinetic Co-mediation of sulfur chemistry [J]. ACS Nano, 2022, 16: 9163-9171. [百度学术]
LI C, LIU R, ZHANG H, et al. Recent progress of separators in lithium-sulfur batteries [J]. Energy Storage Materials, 2021, 40: 439-460. [百度学术]
LI Y, YE D, WANG, Y, et al. Prussian blue analogue/KB-derived Ni/Co/KB composite as a superior adsorption-catalysis separator modification material for Li-S batteries [J]. Journal of Colloid and Interface Science, 2021, 606(2): 1627-1635. [百度学术]
SU Y S, MANTHIRAM A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer [J]. Nature Communication, 2012, 3: 1166. [百度学术]
WANG L, YANG Z, HUANG S M, et al. A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, long-life lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2016, 4: 15343-15352. [百度学术]
XIAO Y B, ZANG Q, HUANG S M, et al. An ultralight electroconductive metal-organic framework membrane for multistep catalytic conversion and molecular sieving in lithium-sulfur batteries [J]. Energy Storage Materials, 2022, 51: 882-889. [百度学术]
XU J, TANG W, CHEN R J, et al. A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li-S chemistry [J]. ACS Energy Letters, 2021, 6: 3053-3062. [百度学术]
WANG P, Xi B, XIONG S, et al. Emerging catalysts to promote kinetics of lithium-sulfur batteries [J]. Advanced Energy Materials, 2021, 11: 2002893. [百度学术]
WALLER P J, GANDARA F, YAGHI O M, et al. Chemistry of covalent organic frameworks [J]. Accounts of Chemical Research, 2015, 48: 3053-3063. [百度学术]
邹文午,蒋国星,杜丽.共价有机框架材料(COFs)在氧电极电催化中的研究进展[J].储能科学与技术, 2021, 10(6): 1891-1905. [百度学术]
XU J, AN S H, SONG X Y, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator [J]. Advanced Materials, 33(49), 2105178. [百度学术]
DUAN H, LI K, XIE M., et al. Scalable synthesis of ultrathin polyimide covalent organic framework nanosheets for high-performance lithium-sulfur batteries [J]. Journal of the American Chemical Society, 2021, 143(46), 19446-19453. [百度学术]
DEY K, PAL M, ROUT K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films [J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. [百度学术]
GAO G, JIA Y, GAO H, et al. New covalent triazine framework rich in nitrogen and oxygen as a host material for lithium-sulfur batteries [J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50258-50269. [百度学术]
DENG X, LI Y, LI L, et al. Sulfonated covalent organic framework modified separators suppress the shuttle effect in lithium-sulfur batteries [J]. Nanotechnology, 2021, 32(27): 275708. [百度学术]
WANG D G, TAN L, WANG H, et al. Multiple covalent triazine frameworks with strong polysulfide chemisorption for enhanced lithium-sulfur batteries [J]. Chem Electro Chem, 2019, 6(10): 2777-2781. [百度学术]
LIAO H P, WANG H M, DING H M, et al. A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries [J]. Journal of Materials Chemistry A, 2016, 4(19): 7416-7421. [百度学术]