摘要
透明导电氧化物(TCO)薄膜因其兼具透明和导电的特性,被广泛应用于各个领域中。氧化铟(In2O3)基TCO薄膜,因其高透明度、低电阻率、高迁移率和良好的化学稳定性而备受关注。综述了In2O3基TCO薄膜的研究进展,介绍了TCO薄膜种类及其常见的制备方法,归纳分析了锡掺In2O3(ITO)、钼掺In2O3(IMO)、钨掺In2O3(IWO)、钛掺In2O3(InTiO)等几种典型的In2O3基TCO薄膜研究现状,并对TCO薄膜未来的发展趋势进行了总结和展望。
透明导电氧化物(transparent conductive oxide,TCO)薄膜是指在可见光(380—780 nm)范围内具有高透过率,同时又能导电的氧化物薄膜。由于其兼具透明和导电的特性,被广泛应用于各种领域中,包括传感器、太阳能电池、发光二极管、光电探测器和平板显示器
本文首先对In2O3基TCO薄膜的几种常见制备方法进行了介绍,接着对In2O3薄膜的研究现状进行了归纳了分析,具体介绍了ITO、钼掺In2O3(IMO)、钨掺In2O3(IWO)、钛掺In2O3(InTiO)等几种有代表性的TCO薄膜的研究现状,最后对TCO薄膜未来的发展趋势进行了总结和展望。
常见的In2O3基TCO薄膜的制备方法有磁控溅射法、脉冲激光沉积法、喷雾热解法等,下面分别对这三种制备方法进行介绍。
磁控溅射主要分为直流磁控溅射和射频磁控溅射,工作原理是电子在电场的作用下,与氩原子发生碰撞,激发出二次电子和A
磁控溅射法可以通过更换不同靶材和控制不同溅射时间,获得所需材质和厚度的薄膜,其具有致密均匀、附着力强,以及可以通过光刻工艺进行图案化等诸多优点,因此广泛应用于薄膜电子器件,新型显示等行业中。
脉冲激光沉积是利用激光对靶材进行轰击,在高功率激光束的作用下使得靶材物质从表面逸出,从而在衬底上沉积成膜。脉冲激光沉积具有沉积速率高,衬底温度要求低,化学计量比精确可控,工艺参数任意调节,制备的薄膜致密均匀等诸多优点。Liu
喷雾热解法是将所需组分的溶液以雾状喷入高温气氛中,干燥热分解成气化膜,然后在预热的基片上沉积成膜。喷雾热解法不需要使用高真空设备,因而工艺相对简单、设备成本低。此外,所需前驱体溶液的配置组份容易调控,且易于掺杂。Jothibas
除了上面提到的几种薄膜制备方法,还有其他几种方法可以实现制备In2O3基TCO薄膜。Kaleemulla
In2O3有两种晶体结构,常温下属于立方锰铁矿(bixbyite)结构,另一种则是六方晶系刚玉型结构,

图1 In2O3的晶格结构(立方锰铁矿
Figure 1 Structure of crystalline In2O3 (bixbyite)
在所有类型的TCO材料中,ITO是一种具有代表性的薄膜,其电阻率可低至1×1
ITO薄膜是指在In2O3中掺Sn元素,掺入的Sn元素部分取代了In元素,由于掺入的Sn元素的量较小,并不改变In2O3本身的晶体结构,但其晶格常数与In2O3略有差异,这主要是因为Sn元素取代了In元素,S
ITO薄膜通常采用射频磁控溅射的方法制备。Najwa

图2 ITO薄膜的I-V特性与氧气百分比的关
Figure 2 I-V characteristics of ITO films grown as a function of oxygen percentage
ITO薄膜也可以通过电子束蒸发的方法制备。Raoufi和Taherniya

图3 不同衬底温度下ITO薄膜的XRD图
Figure 3 XRD pattern of ITO thin films deposited at different substrate temperatures
薄膜沉积后的处理工序对薄膜性质的改善起着关键作用,常见的处理方法是退火处理。Zhu
TCO薄膜主要应用于光伏和显示行业中,虽然传统的TCO薄膜材料在可见光区域具有透射率高、电阻率低的特点,但其在近红外光区域内的透射率较差,所以太阳能电池对太阳光谱的响应范围不理想,不利于提高转化效率。近年来,用钼元素对In2O3进行掺杂改性获得高性能TCO薄膜的研究吸引了很多学者的兴趣,IMO薄膜不仅导电性优良,而且在近红外光和可见光区域内都有很高的透过率,满足了上述要求。
Meng

图4 不同Mo掺杂浓度下IMO薄膜的XRD图
Figure 4 XRD pattern of IMO thin films deposited at different Mo doping concentration
Jeon

图5 IMO薄膜的光学透射光
Figure 5 Optical transmittance spectra of IMO thin films deposited
韩东港
IWO同IMO一样,In2O3中掺入W元素之后,仍然保持其晶格结构,W元素以六价
李渊

图6 不同氧分压制备的IWO薄膜的表面形
Figure 6 SEM images of IWO films prepared using different oxygen partial pressure
Pan
除了上述介绍的几种TCO薄膜外,研究人员使用Ti对In2O3进行掺杂也获得了高性能的InTiO薄膜。Hest
研究人员对于改善InTiO薄膜的性能也做了很多研究。Chaoumead

图7 不同射频功率下InTiO薄膜的AFM形
Figure 7 AFM morphologies of the InTiO film at different RF powers
Heo
除了上述提到的几种掺杂元素,还可以通过其他元素对In2O3进行掺杂制备具有优秀导电性和透明度的TCO薄膜。Xu Lei
随着电子器件朝着柔性化的方向发展,这对TCO薄膜的制备温度及应力等方面提出了更高的要求。由于一般塑料衬底不能耐受高温,需要降低ITO薄膜的工艺温度,为了使ITO薄膜能够在弯折形变下还保持高的光电性能,需要优化薄膜厚度和制备工艺等。因此,为了匹配柔性电子器件的应用需求,未来TCO薄膜需要满足如下要求:(1)薄膜工艺温度低,不能超过柔性衬底的耐受温度;(2)薄膜可承受一定曲率范围的弯折形变且仍能保持较好的光电性能,这无疑对TCO薄膜提出了更高的挑战。
Park
在国家提出双碳目标的大背景下,原料易取、无毒、工艺温度低、可承受一定曲率范围的弯折形变且能保持较好的光电性能的TCO薄膜将吸引广大研究人员的目光。因此,提升薄膜透过率、持续减小其电阻率、降低制备成本,推动柔性衬底TCO薄膜的发展,将会是本领域未来很长一段时间的研究重点。
参考文献
GONG W B, WANG G H, GONG Y B, et al. Investigation of In2O3:SnO2 films with different doping ratio and application as transparent conducting electrode in silicon heterojunction solar cell[J]. Solar Energy Materials and Solar Cells, 2022, 234: 111404. [百度学术]
GAN T, LI J M, WU L L, et al. High carrier mobility tungsten-doped indium oxide films prepared by reactive plasma deposition in pure argon and post annealing[J]. Materials Science in Semiconductor Processing, 2022, 138: 106275. [百度学术]
JUNG D H, OH Y J, LIM S H, et al. The optical and electrical properties of amorphous gallium/titanium Co-doped indium oxide films based on oxygen flow dependence[J]. Journal of Applied Physics, 2021, 129(12): 125301. [百度学术]
DEY K, ABERLE A G, VAN EEK S, et al. Superior optoelectrical properties of magnetron sputter-deposited cerium-doped indium oxide thin films for solar cell applications[J]. Ceramics International, 2021, 47(2): 1798-1806. [百度学术]
VILCA-HUAYHUA C A, PAZ-CORRALES K J, ARAGON F F H, et al. Growth and vacuum post-annealing effect on the structural, electrical and optical properties of Sn-doped In2O3 thin films[J]. Thin Solid Films, 2020, 709: 138207. [百度学术]
GRUNDMANN M. Karl Badeker (1877-1914) and the discovery of transparent conductive materials[J]. Physica Status Solidi a-Applications and Materials Science, 2015, 212(7): 1409-1426. [百度学术]
CHOE S H, PARK Y J, KIM Y S, et al. Enhanced optical and electrical properties of ti doped In2O3 thin films treated by post-deposition electron beam irradiation[J]. Korean Journal of Metals and Materials, 2020, 58(11): 793-797. [百度学术]
ISLAM M A, MOU J R, ROY R C, et al. High near-infrared transmittance, high intense orange luminescence in vanadium doped indium oxide (V: In2O3) thin films deposited by electron beam evaporation[J]. Optik, 2018, 157: 208-216. [百度学术]
SUN K W, YANG C L, ZHANG D, et al. Effects of ambient high-temperature annealing on microstructure, elemental composition, optical and electrical properties of indium tin oxide films[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2022, 276: 115534. [百度学术]
ZHU H, ZHANG H, ZHANG T H, et al. Optical and electrical properties of ITO film on flexible fluorphlogopite substrate[J]. Ceramics International, 2021, 47(12): 16980-16985. [百度学术]
WEN L, SAHU B B, HAN J G, et al. Improved electrical and optical properties of ultra-thin tin doped indium oxide (ITO) Thin films by a 3-dimensionally confined magnetron sputtering source[J]. Science of Advanced Materials, 2021, 13(8): 1498-1505. [百度学术]
BEJI N, SOULI M, REGHIMA M, et al. Effects of molybdenum doping and annealing on the physical properties of In2O3 Thin films[J]. Journal of Electronic Materials, 2017, 46(11): 6628-6638. [百度学术]
DEANGELIS A D, ROUGIER A, MANAUD J P, et al. Temperature-resistant high-infrared transmittance indium molybdenum oxide thin films as an intermediate window layer for multi-junction photovoltaics[J]. Solar Energy Materials and Solar Cells, 2014, 127: 174-178. [百度学术]
MOHAMMADI S, ABDIZADEH H, GOLOBOSTANFARD M R. Opto-electronic properties of molybdenum doped indium tin oxide nanostructured thin films prepared via sol-gel spin coating[J]. Ceramics International, 2013, 39(6): 6953-6961. [百度学术]
刘飞, 郭永刚, 张敏. 不同掺杂比例的IWO导电薄膜特性分析[J]. 电子世界, 2022(1): 37-38. [百度学术]
LIU Y Q, ZHU S J, WEI R H, et al. Solution processed W-doped In2O3 thin films with high carrier mobility[J]. Ceramics International, 2020, 46(2): 2173-2177. [百度学术]
YAO Z R, DUAN W Y, STEUTER P, et al. Influence of oxygen on sputtered titanium-doped indium oxide thin films and their application in silicon heterojunction solar cells[J]. Solar Rrl, 2021, 5(1): 2000501. [百度学术]
POONTHONG W, MUNGKUNG N, CHANSRI P, et al. Performance analysis of Ti-doped In2O3 thin films prepared by various doping concentrations using rf magnetron sputtering for light-emitting device[J]. International Journal of Photoenergy, 2020, 2020: 1-9. [百度学术]
JOTHIBAS M, MANOHARAN C, RAMALINGAM S, et al. Spectroscopic analysis, structural, microstructural, optical and electrical properties of Zn-doped In2O3 thin films[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2014, 122: 171-178. [百度学术]
LEE S J, CHO S. Effect of deposition temperature on the properties of ZnO-doped indium oxide thin films[J]. Journal of the Korean Physical Society, 2014, 64(10): 1488-1493. [百度学术]
BEJI N, SOULI M, AZZAZA S, et al. Study on the zinc doping and annealing effects of sprayed In2O3 thin films[J]. Journal of Materials Science-Materials in Electronics, 2016, 27(5): 4849-4860. [百度学术]
HOYER K L, HUBMANN A H, KLEIN A. Influence of dopant segregation on the work function and electrical properties of Ge-doped in comparison to Sn-doped In2O3 thin films[J]. Physica Status Solidi a-Applications and Materials Science, 2017, 214(2): 1600486. [百度学术]
XU L, WANG R, LIU Y, et al. Influence of post-annealing on the properties of Ta-doped In2O3 transparent conductive films[J]. Chinese Science Bulletin, 2011, 56(15): 1535-1538. [百度学术]
KRISHNAN R R, SREEDHARAN R S, SUDHEER S K, et al. Effect of tantalum doping on the structural and optical properties of RF magnetron sputtered indium oxide thin films[J]. Materials Science in Semiconductor Processing, 2015, 37: 112-122. [百度学术]
CHO S. Effects of annealing temperature on the properties of Ga-doped In2O3 thin films[J]. Journal of the Korean Physical Society, 2015, 67(7): 1252-1256. [百度学术]
WANG G H, SHI C Y, ZHAO L, et al. Efficiency improvement of the heterojunction solar cell using an antireflection Hf-doped In2O3 thin film prepared via glancing angle magnetron sputtering technology[J]. Optical Materials, 2020, 109: 110323. [百度学术]
WANG G H, SHI C Y, ZHAO L, et al. Transparent conductive Hf-doped In2O3 thin films by RF sputtering technique at low temperature annealing[J]. Applied Surface Science, 2017, 399: 716-720. [百度学术]
ZHANG J Y, FU X, ZHOU S X, et al. The Effect of zirconium doping on solution-processed indium oxide thin films measured by a novel nondestructive testing method (microwave photoconductivity decay)[J]. Coatings, 2019, 9(7): 426. [百度学术]
MANOHARAN C, JOTHIBAS M, JEYAKUMAR S J, et al. Structural, optical and electrical properties of Zr-doped In2O3 thin films[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2015, 145: 47-53. [百度学术]
KHAN A, RAHMAN F, NONGJAI R, et al. Optical transmittance and electrical transport investigations of Fe-doped In2O3 thin films[J]. Applied Physics a-Materials Science & Processing, 2021, 127(5): 1-11. [百度学术]
LIU J D. Manganese-doped transparent conductive magnetic indium oxide films integrated on flexible mica substrates with high mechanical durability[J]. Ceramics International, 2022, 48(3): 3390-3396. [百度学术]
PRASAD K H, KUMAR K D A, MELE P, et al. Structural, magnetic and gas sensing activity of pure and Cr doped In2O3 thin films grown by pulsed laser deposition[J]. Coatings, 2021, 11(5): 588. [百度学术]
LI Y, WANG W W, ZHANG J Y, et al. Preparation and properties of tungsten-doped indium oxide thin films[J]. Rare Metals, 2012, 31(2): 158-163. [百度学术]
KALEEMULLA S, RAO N M, JOSHI M G, et al. Electrical and optical properties of In2O3:Mo thin films prepared at various Mo-doping levels[J]. Journal of Alloys and Compounds, 2010, 504(2): 351-356. [百度学术]
BUCHHOLZ D B, MA Q, ALDUCIN D, et al. The structure and properties of amorphous indium oxide[J]. Chemistry of Materials, 2014, 26(18): 5401-5411. [百度学术]
PARK H J, KIM J, WON J H, et al. Tin-doped indium oxide films for highly flexible transparent conducting electrodes[J]. Thin Solid Films, 2016, 615: 8-12. [百度学术]
NAJWA S, SHUHAIMI A, TALIK N A, et al. In-situ tuning of Sn doped In2O3 (ITO) films properties by controlling deposition argon/oxygen flow[J]. Applied Surface Science, 2019, 479: 1220-1225. [百度学术]
RAOUFI D, TAHERNIYA A. The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films[J]. European Physical Journal-Applied Physics, 2015, 70(3): 30302. [百度学术]
MENG Y, YANG X L, CHEN H X, et al. A new transparent conductive thin film In2O3 : Mo[J]. Thin Solid Films, 2001, 394(1-2): 219-223. [百度学术]
VISHWANATH S K, CHO K Y, KIM J. Polymer-assisted solution processing of Mo-doped indium oxide thin films: high-mobility and carrier-scattering mechanisms[J]. Journal of Physics D-Applied Physics, 2016, 49(15): 155501. [百度学术]
PARTHIBAN S, ELANGOVAN E, RAMAMURTHI K, et al. Structural, optical and electrical properties of indium-molybdenum oxide thin films prepared by spray pyrolysis[J]. Physica Status Solidi a-Applications and Materials Science, 2010, 207(7): 1554-1557. [百度学术]
JEON J, OH G, KIM E. Optical and electrical properties of indium molybdenum oxide thin films by the co-sputtering method[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(10): 10970-10974. [百度学术]
韩东港, 陈新亮, 杨瑞霞. 厚度对电子束蒸发制备IMO薄膜性能的影响[J]. 河北工业大学学报, 2010, 39(6): 1-3. [百度学术]
袁果, 黎建明, 张树玉. 氧分压对掺钼氧化铟透明导电薄膜光电性能的影响[J]. 功能材料与器件学报, 2011, 17(1): 46-50. [百度学术]
李渊, 王文文, 张俊英. In2O3:W薄膜的制备及光电性能研究[J]. 功能材料, 2011, 42(8): 1457-1460. [百度学术]
PAN J J, WANG W W, WU D Q, et al. Tungsten doped indium oxide thin films deposited at room temperature by radio frequency magnetron sputtering[J]. Journal of Materials Science & Technology, 2014, 30(7): 644-648. [百度学术]
VISHWANATH S K, AN T, JIN W Y, et al. The optoelectronic properties of tungsten-doped indium oxide thin films prepared by polymer-assisted solution processing for use in organic solar cells[J]. Journal of Materials Chemistry C, 2017, 5(39): 10295-10301. [百度学术]
VAN HEST M F A M, DABNEY M S, PERKINS J D, et al. Titanium-doped indium oxide: A high-mobility transparent conductor[J]. Applied Physics Letters, 2005, 87(3): 032111. [百度学术]
KIM D J, KIM B S, KIM H K. Effect of thickness and substrate temperature on the properties of transparent Ti-doped In2O3 films grown by direct current magnetron sputtering[J]. Thin Solid Films, 2013, 547: 225-229. [百度学术]
CHAOUMEAD A, JOO B H, KWAK D J, et al. Structural and electrical properties of sputtering power and gas pressure on Ti-dope In2O3 transparent conductive films by RF magnetron sputtering[J]. Applied Surface Science, 2013, 275: 227-232. [百度学术]
HEO S B, MOON H J, OH J H, et al. Effect of post-deposition annealing on the structural, optical and electrical properties of ti-doped indium oxide thin films[J]. Korean Journal of Metals and Materials, 2016, 54(10): 775-779. [百度学术]
LI H B, WANG N, LIU X Y. Optical and electrical properties of vanadium doped Indium oxide thin films[J]. Optics Express, 2008, 16(1): 194-199. [百度学术]
周爱萍, 刘汉法, 臧永丽. ZnO∶Nb透明导电薄膜的制备及光电特性研究[J]. 功能材料, 2013, 44(7): 1012-1014. [百度学术]
ZHAO C H, LIU J F, GUO Y X, et al. RF magnetron sputtering processed transparent conductive aluminum doped ZnO thin films with excellent optical and electrical properties[J]. Journal of Materials Science-Materials in Electronics, 2021, 32(7): 9106-9114. [百度学术]