《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
基于原位同步辐射X射线的铝合金凝固组织与变形机制研究进展
CSTR:
作者:
作者单位:

1.东莞理工学院机械工程学院,广东 东莞 523808;2.广东省科学院新材料所,广东 广州 510650;3.华南理工大学机械与汽车工程学院,广东 广州 510641

作者简介:

魏秋云,硕士研究生,研究方向为铝合金。E-mail:hpuqiuyunwei@163.com。

通讯作者:

赵愈亮,博士,副教授,研究方向为铝合金。E-mail:zhaoyl@dgut.edu.cn。

中图分类号:

TG146.2

基金项目:

国家自然科学基金项目(52104373);广东省“创新强校工程”计划科研项目(2023KTSCX150)


Research Progress on Solidification Structure and Deformation Mechanism of Aluminum Alloys Based on In-situ Synchrotron Radiation X-rays
Author:
Affiliation:

1.School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China;2.Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;3.School of Mechanical and Automo-tive Engineering, South China University of Technology, Guangzhou 510641, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    铝合金具有密度低、强度高和导热性能好等优点,广泛应用于航空航天、交通运输和电子信息等行业。然而,随着铝合金产品的更新换代,对铝合金材料的力学性能提出更高的要求,因此亟需开发新型铝合金材料。通过同步辐射X射线成像与衍射技术研究铝合金材料成分-工艺-组织-性能之间的关系,是推动铝合金材料研发与设计的重要途径。同步辐射成像技术作为一种高分辨率、无损的研究手段,从二维发展到三维、四维成像,实现了材料内部复杂结构的实时动态监测,为建立材料形态与性能演化模型提供了重要实验依据。此外,三维及四维成像技术突破了传统观测的时空限制,显著提高了对铝合金材料在凝固、受载变形及疲劳损伤过程中的结构演变研究能力,为分析微观组织对宏观性能的影响奠定了基础。同步辐射衍射技术凭借高时空分辨率和介观尺度的独特优势,能够捕捉材料变形过程中微观组织的应力-应变演化特征,揭示微区力学性质和几何形态对载荷分配行为的影响。这一技术为研究材料复杂的形变机制及其性能优化提供了强有力的支撑,同时推动了多尺度力学模型的发展。结合同步辐射成像与衍射技术,可实现从宏观力学行为到微观结构演变的多尺度关联研究,特别是在应力、应变分布动态变化的预测及其对材料疲劳与断裂机制的影响方面表现出极大潜力。未来,通过整合同步辐射技术与机器学习、纳米成像技术及多模态实验装置,有望进一步提升时间和空间分辨率,突破现有技术局限,为探索铝合金材料体系的结构-性能关系及开发材料设计理论提供新的研究路径和技术支持。(专精特新·特殊环境材料服役行为专辑十五之一)

    Abstract:

    Aluminium alloys, known for their low density, high strength, and excellent thermal conductivity, have been widely applied in industries such as aerospace, transportation, and electronics. However, with the continuous advancements in aluminium alloy products, there is an increasing demand for improved mechanical performance, necessitating the development of novel aluminium alloy materials. Investigating the relationships among composition, processing, microstructure, and properties of aluminium alloys using synchrotron X-ray imaging and diffraction techniques has become a crucial approach to advancing the design and development of these materials. As a high-resolution, non-destructive research method, synchrotron imaging technology has evolved from two-dimensional to three-dimensional and even four-dimensional imaging, enabling real-time dynamic monitoring of complex internal structures. These capability provides essential experimental evidence for establishing models of the evolution of material morphology and properties, thereby offering valuable insights into aluminium alloy material innovation. Moreover, three-dimensional and four-dimensional imaging techniques have overcome the traditional limitations of spatial and temporal resolution, significantly enhancing the ability to study the structural evolution of aluminium alloys during processes such as solidification, deformation under load, and fatigue damage. These advancements have laid a solid foundation for analyzing the influence of microstructural features on macroscopic performance. Synchrotron diffraction techniques, with their exceptional spatiotemporal resolution and mesoscopic scale capabilities, enable the precise capture of stress-strain evolution characteristics within the microstructure during deformation. This approach reveals the influence of local mechanical properties and geometric morphology on load distribution behavior. Such capabilities provide robust support for investigating the complex deformation mechanisms of materials and optimizing their performance, while also driving the development of multi-scale mechanical models. By integrating synchrotron imaging and diffraction techniques, multi-scale correlative studies bridging macroscopic mechanical behavior with microstructural evolution can be achieved. This approach demonstrates significant potential, particularly in predicting the dynamic variations in stress and strain distribution and their impact on material fatigue and fracture mechanisms. In the future, the integration of synchrotron radiation techniques with machine learning, nanoscale imaging, and multi-modal experimental platforms is expected to further enhance both temporal and spatial resolution, overcoming current technological limitations. Such advancements will provide new research pathways and technical support for exploring the structure-property relationships in aluminum alloy systems and developing theoretical frameworks for material design.

    参考文献
    相似文献
    引证文献
引用本文

魏秋云,刘欢,甘佰辉,赖佳豪,宋东福,张卫文,赵愈亮.基于原位同步辐射X射线的铝合金凝固组织与变形机制研究进展[J].材料研究与应用,2025,19(3):385-410.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码
材料研究与应用 ® 2025 版权所有