《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
TiC-TiWC2增强高铬铸铁基复合材料的组织与磨损性能研究
CSTR:
作者:
作者单位:

1.广东省科学院新材料研究所/国家钛及稀有金属粉末冶金工程技术研究中心/广东省金属强韧化技术与应用重点实验室,广东 广州 510650;2.中国地质大学(北京)工程技术学院,北京 100083;3.广东中天创展球铁有限公司, 广东 清远 513000;4.安徽索立德铸业有限公司,安徽 马鞍山 230000

作者简介:

王茂森,硕士研究生,研究方向为钢铁耐磨蚀。Email: 2489375534@qq.com。

通讯作者:

郑开宏,博士,教授级高工,研究方向为金属材料、无机非金属材料及其复合材料成形与加工。Email: zhkaihong2003@163.com。

中图分类号:

TB331;TF823

基金项目:

国家重点研发计划项目(2021YFB3701205);广东省科学院项目(2022GDASZH-2022010202-04);广东省学科类重点实验室评估专项项目(2023B1212060043);清远市科技计划项目(2023DZX013)


Investigation of Microstructures and Wear Properties of TiC-TiWC2 Reinforced High Chromium Cast Iron Matrix Composites
Author:
Affiliation:

1.Institute of New Materials, Guangdong Academy of Sciences/National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals/Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China;2.China University of Geosciences, Beijing 100083, China;3.Guangdong Zhongtian Chuangzhan Ductile Iron Co., Ltd., Qingyuan 513000, China;4.Anhui Solid Foundry Co., Ltd., Maan-shan 230000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高铬铸铁因优良的韧性和耐磨性,被广泛应用于各种工程领域。然而,在高负荷和极端磨损条件下,高铬铸铁的表面会出现凹坑、裂纹及断裂等失效现象,无法满足工况需求。硬质金属碳化物因具有较高的硬度,能够有效抵抗多种形式的磨料磨损,因此常被添加至金属基体中,以提升基体的硬度与耐磨性能。通过引入W、Ti、C的混合金属碳化物体系,采用粉末冶金与铸造相结合的方法制备了TiC-TiWC2增强的高铬铸铁基复合材料。利用SEM、XRD、EDS法对复合材料的微观组织和物相进行分析,通过维氏硬度计测试复合材料的显微硬度,利用三体磨损试验机比较了复合材料与传统高铬铸铁材料在相同工艺条件下的耐磨性能。结果表明,在原位反应过程中,复合材料内部形成了TiC-TiWC2增强相,该增强相以核壳结构的方式生长。复合区域的平均硬度值可达到1 300 HV左右,几乎是基体区域硬度的2倍。在三体磨损实验中,传统高铬铸铁材料中的M7C3型碳化物发生脆性断裂和疲劳剥落,因而磨损表面多呈现连续的划痕和面积较大的凹坑,而复合材料的磨损表面相对平整,仅部分基体区域表现出短而浅的划痕和犁沟,磨损截面整体连续且无明显纵向裂纹。通过对比分析发现,复合材料的耐磨性能相比高铬铸铁基体提升了2倍以上,表明TiC-TiWC2增强相显著提高了高铬铸铁的硬度和耐磨性。

    Abstract:

    High chromium cast iron is extensively utilized in various engineering applications for its excellent toughness and wear resistance. However, its wear performance is limited under high load and extreme wear conditions , which can lead to surface failures such as craters, cracks, and fractures. Hard metal carbides, known for their high hardness, offer effective resistance to various forms of abrasive wear, and are often incorporated into the metal matrix to improve hardness and wear resistance. This study investigates the preparation of a TiC-TiWC2 reinforced high chromium cast iron matrix composite by introducing a mixed-metal carbide system of tungsten (W), titanium (Ti), and carbon (C) through powder metallurgy and casting techniques. The microstructure and phases of the composite were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). Microhardness was evaluated with a Vickers hardness tester, while wear resistance was assessed via three-body wear tester, comparing the composite to high chromium cast iron under the same processing conditions. The results indicated that an in-situ reaction led to the formation of a TiC-TiWC2 reinforced phase within the composite region, primarily in a core-shell structure. The average hardness of the composite region was approximately 1 300 HV, nearly twice that of the matrix. In wear tests, the high chromium cast iron matrix showed brittle fracture and fatigue spalling of M7C3-type carbides, with wear surfaces characterized by significant scratches and pits. In contrast, the wear surface of the composite appeared smoother, with only short and shallow scratches and furrows in localized areas. The composite’s wear cross-section was continuous and free of major longitudinal cracks. Overall, the wear resistance of the composite was more than twice that of high chromium cast iron, highlighting the effectiveness of the TiC-TiWC2 reinforced phase in significantly improving both hardness and wear resistance of the high chromium cast iron.

    参考文献
    相似文献
    引证文献
引用本文

王茂森,王帅,龙骏,付志强,柯志敏,刘彬彬,吴龙祥,郑开宏. TiC-TiWC2增强高铬铸铁基复合材料的组织与磨损性能研究[J].材料研究与应用,2025,19(1):164-170.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-27
  • 出版日期:
文章二维码
材料研究与应用 ® 2025 版权所有