《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
先驱体转化法制备SiFeOC陶瓷及其吸波性能研究
CSTR:
作者:
作者单位:

1.景德镇陶瓷大学材料科学与工程学院,江西 景德镇 333403;2.华南理工大学材料科学与工程学院,广东 广州 510641;3.广州大学物理与材料科学学院,广东 广州 510006

作者简介:

钱俊杰,博士,讲师,研究方向为吸波材料与先驱体陶瓷制备。E-mail: qianjunjie@jcu.edu.cn。

通讯作者:

中图分类号:

TQ174

基金项目:

国家自然科学基金项目(52272062;51902107;51972114)


Preparation of Precursor Derived SiFeOC Ceramics and Study on Its Electromagnetic Wave Absorption Properties
Author:
Affiliation:

1.School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China;2.School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China;3.School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着智能时代的快速发展,电磁污染已经成为继大气污染、水污染、噪音污染之后的第四大污染源,其对人体健康带来不同程度的危害。开发轻质高效的电磁波吸收材料,有望减少环境中的电磁污染,同时还可以提高飞行器的雷达隐身功能以增强安全服役性。SiOC陶瓷先驱体具有耐高温、良好的抗氧化性能和结构可调性等特性而受到广泛的关注,然而其本身的吸波性能并不理想。为了提升SiOC陶瓷的吸波性能,以甲基三甲氧基硅烷、二甲基二甲氧基硅烷和硝酸铁为主要原料,以硝酸为催化剂,无水乙醇为溶剂,采用溶剂热法合成SiFeOC陶瓷湿凝胶,经老化、干燥等工艺制得SiFeOC陶瓷干凝胶,再经高温处理后获得SiFeOC陶瓷,通过改变硝酸铁含量对SiOC陶瓷先驱体进行改性,研究硝酸铁含量和热处理温度对SiFeOC陶瓷的物相组成、微观结构及吸波性能的影响。结果表明,硝酸铁的引入,促进了非晶SiOC陶瓷基体中析出大量的SiC纳米晶和自由碳,从而形成丰富的异质界面。由于SiC/SiOC、Cfree/SiOC等界面形成的界面极化、自由碳的缺陷极化、SiC纳米晶的介电损耗和自由碳导电损耗的协同作用,硝酸铁质量分数为3%的SiFeOC陶瓷具有最佳的吸波性能,当其厚度为3.6 mm时最小反射损耗值为-47.6 dB,而当厚度为4.5 mm时最大有效吸波带宽达3.7 GHz。此外,由于硝酸铁的引入,SiOC陶瓷的非晶结构得以保留,热稳定性能得到增强。本研究为SiOC陶瓷微结构调控提供了新策略,对高性能吸波材料的开发具有重要的指导意义。(专精特新·电磁波吸收与屏蔽用新型材料的研究进展专辑十二之十)

    Abstract:

    With the rapid development of the intelligent era, electromagnetic wave pollution has become the fourth pollution source after air pollution, water pollution and noise pollution, which endangers human health. The development of efficient electromagnetic wave absorbing materials is expected to reduce electromagnetic pollution in the environment, as well as improve the radar stealth function of the aircraft, and enhance its safe service. In this study, methyl trimethoxysilane, dimethyl dimethoxysilane and ferric nitrate were used as the main raw materials, and nitric acid and anhydrous ethanol were used as catalyst and solvent. SiFeOC ceramic precursor was modified by ferric nitrate, SiFeOC ceramic wet gel was synthesized by solvothermal method, and SiFeOC ceramic dry gel was formed by aging and drying. And then the SiFeOC ceramic was obtained after heat treatment. The effects of ferric nitrate content and heat treatment temperature on phase composition and microstructure of SiFeOC ceramics were studied, and the electromagnetic wave absorption properties of SiFeOC ceramics were characterized. The influence of microstructure and material on the absorbing properties of SiFeOC ceramics was discussed. The results showed that the introduction of ferric nitrate promoted the precipitation of large amounts of SiC nanocrystals and free carbon in an amorphous SiOC ceramic matrix, forming a rich heterogeneous interface. Finally, owing to the synergistic effect of interface polarization formed by SiC/SiOC, Cfree/SiOC, defect polarization in free carbon, dielectric loss of SiC nanocrystals and conductive loss of free carbon, SiFeOC ceramics with 3 wt.% ferric nitrate exhibited the best electromagnetic wave absorption performance, when the sample thickness was 3.6 mm, the minimum reflection loss value was -47.6 dB; When the sample thickness was 4.5 mm, the maximum effective absorption bandwidth reached 3.7 GHz. In addition, due to the introduction of ferric nitrate, the amorphous structure of SiOC ceramics was preserved and its thermal stability was enhanced. This study provides a novel micro-structure control strategy for SiOC ceramics, which has important guiding significance for the development of high-performance absorbing materials.

    参考文献
    相似文献
    引证文献
引用本文

钱俊杰,马丹丹,税安泽,杜斌.先驱体转化法制备SiFeOC陶瓷及其吸波性能研究[J].材料研究与应用,2025,19(1):107-117.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-27
  • 出版日期:
文章二维码
材料研究与应用 ® 2025 版权所有