《材料研究与应用》编辑部欢迎您!
2025年4月16日 加入收藏 | 设为主页 
纤维增强聚合物的纳米改性工艺及其电磁屏蔽效应与力学性能的研究进展
作者:
作者单位:

1.中国科学院宁波材料技术与工程研究所,浙江 宁波 315201;2.中国科学院大学材料科学与光电技术学院,北京 100049;3.中国科学院大学化学科学学院,北京 100049

作者简介:

吴苗苗,博士研究生,研究方向为多功能纳米改性纤维复合材料的制备与应用。E-mail:wumm1634@163.com。

通讯作者:

欧云福,博士,助理研究员,研究方向为复合材料增强与增韧。E-mail:ouyunfu@nimte.ac.cn
茅东升,博士,研究员,研究方向纳米增强复合材料。E-mail:maodongsheng@nimte.ac.cn。

中图分类号:

TB33


Research Progress on Nano Modification Process of Fiber-Reinforced Polymers in Electromagnetic Shielding Effect and Mechanical Properties
Author:
Affiliation:

1.Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China;2.School of Materials Science and Photovoltaic Technology,University of Chinese Academy of Sciences,Beijing 100049,China;3.School of Chemical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着无线连接和电子设备的迅速发展,电磁波污染日益成为公众关注的焦点之一。因此,对电磁干扰屏蔽材料的需求急剧增加,这种需求涵盖了从日常通信设备(如天线和基站)到军事领域(如雷达系统和电子战设备)的各个方面。为减少电磁辐射对周围环境和人体的影响,以及防止敌方的电磁侦测和干扰,开发具备优异力学性能和电磁屏蔽性能的材料显得尤为重要和迫切。纤维增强聚合物电磁屏蔽复合材料不仅具有高效的电磁屏蔽能力,还展现出优异的力学性能,能够满足恶劣环境下的应用需求。然而,目前的研究大多集中在非连续纤维增强聚合物基复合材料方面。为了开发出力学性能优异的连续增强结构材料,对电磁屏蔽材料的纳米改性工艺进行了总结,旨在提升连续纤维增强聚合物的电磁屏蔽性能。纳米改性工艺主要包括喷涂法、插层法、原位生长法和基体改性法。其中,喷涂法和插层法,以操作简单而得到广泛应用;原位生长法虽步骤较为复杂,却能在纤维表面及纤维间隙中填充纳米功能材料;而基体改性法是应用最为广泛的技 术,可使纳米功能材料与纤维增强聚合物(FRP)更深入结合。对纤维增强聚合物复合材料进行纳米改性 时,采用多元纳米填料的复合相较于单一填料,能显著平衡并提升复合材料的电磁屏蔽及力学性能。因 此,对于纳米改性工艺的优化,未来趋向于纳米功能填料的改性及多元填料的复合,通过插层法将现有已 成熟的纳米功能薄层与FRP复合,加大并完善对较厚连续纤维增强聚合物复合材料在电磁屏蔽领域的研 究,以获得结构功能一体化复合材料。(专精特新·电磁波吸收与屏蔽用新型材料的研究进展专辑十二之一)

    Abstract:

    With the rapid development of wireless connectivity and electronic devices, electromagnetic wave pollution has increasingly become one of the focuses of public attention. Therefore, the demand for electromagnetic interference shielding materials has soared. This demand spans various aspects, from daily communication devices (such as antennas and base stations) to military fields (such as radar systems and electronic warfare equipment), aiming to reduce the impact of electromagnetic radiation on the surrounding environment and human health, as well as to prevent electromagnetic detection and interference from the enemy. Hence, the development of materials with excellent mechanical properties and electromagnetic shielding capabilities is particularly important and urgent. Fiber-reinforced polymer electromagnetic shielding composites not only exhibit efficient electromagnetic shielding capabilities but also demonstrate outstanding mechanical properties, meeting the application requirements in harsh environments. However, most current research focuses on discontinuous fiber-reinforced polymer-based composites, while relatively speaking, continuous reinforcement structural materials with superior mechanical properties have received less attention due to the imperfect and small-scale electromagnetic shielding modification process. This article reviews four main nano-modification processes aimed at enhancing the electromagnetic shielding performance of continuous fiber-reinforced polymers. Among them, spraying and intercalation methods are widely used due to their simple operation; while in-situ growth method, although having more complex steps, can fill nano-functional materials on the fiber surface and in the fiber gaps; matrix modification method is the most widely used technology, achieving a deeper integration of nano-functional materials with fiber-reinforced polymers. When nano-modifying fiber-reinforced polymer composites, using a composite of multiple nano-fillers can significantly balance and enhance the electromagnetic shielding and mechanical properties of the composites compared to a single filler. Therefore, for the optimization of nano-modification processes, the future trend is towards the modification of nano-functional fillers and the composite of multiple fillers, by intercalating existing mature nano-functional thin layers with FRP composites, enhancing and improving research on thicker continuous fiber-reinforced polymer composites in the field of electromagnetic shielding, to obtain structural and functional integrated composites.

    图1 不同频段电磁波的应用Fig.1 Application of electromagnetic waves in different frequency bands
    图2 电磁屏蔽机理图Fig.2 Electromagnetic shielding mechanism
    图3 纳米改性纤维增强聚合物复合材料电磁屏蔽机理图Fig.3 Electromagnetic shielding mechanism diagram of nano-modified fibre-reinforced polymer composites
    图4 碳纳米材料复合CFRP或GFRP的示意图[51]Fig.4 The schematic diagram of CNM-incorporated CFRP or GFRP
    图5 不同纳米颗粒含量的CFRP的EMI SE随频率的变化规律[48,51,54]Fig.5 EMI SE of CFRP with different nanoparticle content varies with frequency
    图6 化学气相沉积反应装置[58]Fig.6 Chemical vapor deposition reaction device
    图7 ZnMn2O4纳米球/CF网络的制备示意图[42]Fig.7 Preparation diagram of ZnMn2O4 nanospheres /CF network
    图8 CFs表面喷涂纳米碳涂层[38]Fig.8 CFs surface sprayed with nanocarbon coating
    图9 CFs表面电喷涂GO和Fe3O4的CFRP制备示意图[39]Fig.9 Schematic diagram of CFRP preparation by electro-spraying GO and Fe3O4 onto CFs surface.
    图10 GNP插层GFRP[45]Fig.10 GNP intercalation GFRP
    图11 MWCNT-CFRP的制备工艺[46]Fig.11 Preparation process of MWCNT-CFRP
    表 1 基体改性法对FRP电磁屏蔽性能及力学性能的影响Table 1 Influence of matrix modification on electromagnetic shielding properties and mechanical properties of FRP
    表 2 原位生长法对FRP电磁屏蔽性能及力学性能的影响Table 2 Influences of in-situ growth method on electromagnetic shielding properties and mechanical properties of FRP
    表 3 喷涂法对FRP电磁屏蔽性能及力学性能的影响Table 3 Influence of spraying method on electromagnetic shielding properties and mechanical properties of FRP
    表 4 插层法对FRP电磁屏蔽性能及力学性能的影响Table 4 Influences of intercalation method on electromagnetic shielding and mechanical properties of FRP
    参考文献
    相似文献
    引证文献
引用本文

吴苗苗,欧云福,张耘箫,马甜甜,茅东升.纤维增强聚合物的纳米改性工艺及其电磁屏蔽效应与力学性能的研究进展[J].材料研究与应用,2025,19(1):1-14.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-10
  • 在线发布日期: 2025-02-27
文章二维码
材料研究与应用 ® 2025 版权所有