《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
类沸石咪唑酯骨架材料及其衍生物在锂离子电池负极材料中的应用
作者:
作者单位:

华南师范大学

作者简介:

通讯作者:

中图分类号:

基金项目:

广州市科技计划项目(201904010213)


Application of Zeolitic Imidazolate Frameworks and Their Derivatives in Lithium-Ion Battery Anode Materials
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂离子电池作为关键的能量存储装置,在可再生能源和电动汽车等领域中发挥着至关重要的作用.近年来,类沸石咪唑酯骨架(ZIFs)及其衍生材料因其独特结构和优异性能,成为锂离子电池负极材料研究的热点.本文综述了ZIFs材料及其衍生物在锂离子电池负极材料中的应用.首先,ZIFs材料具有高比表面积、丰富孔道结构和良好的化学稳定性,使其在电池领域具有巨大的应用潜力.直接利用类沸石咪唑酯骨架作为锂离子电池负极材料,因其多孔结构有利于锂离子的存储和传输,可以显著缓解电极材料在充放电过程中的体积膨胀应力,从而提高电池的循环寿命和稳定性.其次,通过热处理和化学转化,ZIFs可以转化为多孔碳材料、金属氧化物、金属卤化物、金属磷化物以及硅复合材料等,这些衍生材料结合了ZIFs的结构优势和各自的化学特性,在电池性能方面展现出优异表现.特别是,本文重点介绍了金属氧化物和金属卤化物的应用,因其高理论容量和良好的电化学性能,成为高能量密度负极材料的有力候选.此外,尽管ZIFs及其衍生材料在实际应用中面临一些挑战,如成本较高和制备工艺复杂,但随着研究深入和技术进步,这些问题有望逐步解决.通过优化制备工艺和材料设计,可以进一步提升ZIFs及其衍生材料的电化学性能和实际应用价值.总之,类沸石咪唑酯骨架及其衍生材料在锂离子电池负极材料中的应用展现出广阔前景.

    Abstract:

    As a key energy storage device, lithium-ion batteries play a vital role in areas such as renewable energy and electric vehicle applications. In recent years, zeolitic imidazolate frameworks (ZIFs) and their derivatives have widespread attention as anode materials for lithium-ion batteries due to their unique structures and superior properties. This review provides a comprehensive overview of the application of ZIFs and their derivatives in anode materials for lithium-ion batteries. Firstly, ZIFs materials possess high surface area, rich porosity, and excellent chemical stability, making them highly promising in the battery field. Direct use of ZIFs as anode materials benefits from their porous structure, which facilitates lithium ion storage and transport, effectively mitigating volume expansion stress during charge-discharge cycles, thereby enhancing battery cycle life and stability. Secondly, through thermal treatment and chemical conversion, ZIFs can be transformed into porous carbon materials, metal oxides, metal halides, metal phosphides, and silicon composites. These derivatives combine the structural advantages of ZIFs with their intrinsic chemical properties, exhibiting outstanding performance in battery applications. Notably, this review highlights the applications of metal oxides and metal halides, which, due to their high theoretical capacities and excellent electrochemical properties, emerge as strong candidates for high-energy-density anode materials. Furthermore, despite the challenges faced by ZIFs and their derivatives in practical applications, such as high costs and complex fabrication processes, ongoing research and technological advancements are expected to address these issues. By optimizing fabrication processes and material design, the electrochemical performance and practical utility of ZIFs and their derivatives can be further improved. In conclusion, ZIFs and their derivatives show great potential for application as anode materials in lithium-ion batteries.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-02
  • 最后修改日期:2024-08-17
  • 录用日期:2024-06-12
  • 在线发布日期: 2024-08-26
  • 出版日期:
文章二维码
材料研究与应用 ® 2024 版权所有