《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
类沸石咪唑酯骨架材料及其衍生物在锂离子电池负极材料中的应用
CSTR:
作者:
作者单位:

华南师范大学化学学院,广东 广州 510006

作者简介:

左卫朋,硕士研究生,研究方向为电化学储能材料。E-mail:zuowp@qq.com。

通讯作者:

马国正,博士,副教授,研究方向为电化学材料。E-mail:gzma@scnu.edu.cn
林晓明,博士,教授,研究方向为金属-有机框架及其衍生材料在电化学能源储存和转化的应用。E-mail:linxm@scnu.edu.cn。

中图分类号:

基金项目:

广州市科技计划项目(201904010213)


Applications of Zeolitic Imidazolate Frameworks (ZIFs) and Their Derivatives in Lithium-Ion Battery Anode Materials
Author:
Affiliation:

School of Chemistry, South China Normal University, Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂离子电池作为关键的能量存储装置,在可再生能源和电动汽车等领域中发挥着至关重要的作用。类沸石咪唑酯骨架材料(ZIFs, Zeolitic imidazolate frameworks)是典型的有机框架(MOFs)材料,其可控的孔隙结构和丰富的表面功能性使之成为锂离子电池理想的负极材料之一。综述了ZIFs材料及其衍生物在锂离子电池负极材料中的应用。直接利用类沸石咪唑酯骨架作为锂离子电池负极材料,其多孔结构有利于锂离子的存储和传输,可以显著缓解电极材料在充放电过程中的体积膨胀压力,提高电池的循环寿命和稳定性。通过热处理和化学转化,ZIFs可以转化为衍生物形态,如多孔碳材料、金属氧化物、金属卤化物、金属磷化物及硅复合材料等,这些形态的衍生物不仅保留了ZIFs的结构优势,而且还拥有各自的化学特性,在电池应用方面展现出优异的性能。重点介绍ZIFs金属氧化物和金属卤化物的应用,由于其高理论容量和良好的电化学性能,已成为高能量密度负极材料的有力候选材料。此外,尽管ZIFs及其衍生材料在实际应用中面临一些挑战,如成本较高和制备工艺复杂,但随着研究深入和技术进步,这些问题有望逐步解决。通过优化制备工艺和材料设计,可以进一步提升ZIFs及其衍生材料的电化学性能和实际应用价值。类沸石咪唑酯骨架及其衍生材料在锂离子电池负极材料中的应用前景广阔。

    Abstract:

    As a key energy storage device, lithium-ion batteries play a vital role in renewable energy and electric vehicles. Zeolitic imidazolate frameworks (ZIFs) are a typical type of MOFs material, and their controllable pore structure and abundant surface functionality make them one of the ideal choices for anode materials in lithium-ion batteries. This article summarizes the application of ZIFs materials and their derivatives in lithium-ion battery anode materials. Firstly, directly using the zeolite-like imidazole ester framework as a negative electrode material for lithium-ion batteries can significantly alleviate the volumetric expansion stress of the electrode material during charging and discharging due to its porous structure, which is beneficial for the storage and transport of lithium ions, thereby improving the cycle life and stability of the battery. Secondly, through heat treatment and chemical conversion, ZIFs can be transformed into derivative forms such as porous carbon materials, metal oxides, metal halides, metal phosphides, and silicon composites. These forms not only retain the structural advantages of ZIFs but also possess their own chemical properties, demonstrating excellent performance in battery applications. Among them, this article focuses on the application of ZIFs metal oxides and metal halides, which have become strong candidates for high-energy density anode materials due to their high theoretical capacity and good electrochemical performance. In addition, although ZIFs and their derivative materials face some challenges in practical applications, such as high cost and complex preparation processes, these problems are expected to be gradually solved with further research and technological progress. By optimizing the preparation process and material design, the electrochemical performance and practical application value of ZIFs and their derivative materials can be further improved. In summary, the application of zeolite-like imidazole ester framework and its derivatives in lithium-ion battery anode materials shows great promise.

    参考文献
    相似文献
    引证文献
引用本文

左卫朋,周健恩,陈跃颖,马国正,林晓明.类沸石咪唑酯骨架材料及其衍生物在锂离子电池负极材料中的应用[J].材料研究与应用,2024,18(6):866-880.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-23
  • 出版日期:
文章二维码
材料研究与应用 ® 2025 版权所有