《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
等离子体技术在储能材料中的应用:从缺陷工程到性能优化
CSTR:
作者:
作者单位:

南京信息工程大学化学与材料学院,江苏 南京210014

作者简介:

姚嘉诺,硕士研究生,研究方向为新能源材料。E-mail: 1532992487@qq.com。

通讯作者:

张国臻,博士,教授,研究方向为纳米复合材料。E-mail: 003497@nuist.edu.cn。

中图分类号:

基金项目:


Application of Plasma Technology in Energy Storage Materials: From Defect Engineering to Performance Optimization
Author:
Affiliation:

School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nan-jing 210014, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着全球对可再生能源需求的迅速增长,开发高效、环保的电化学储能技术已成为关键的研究课题。储能装置的性能高度依赖于电极材料的选择与改性,这直接决定了其能量密度、功率密度和循环寿命。然而,传统材料合成与改性方法通常伴随着高能耗、工艺复杂及环境污染等问题。等离子体技术作为一种新兴材料处理技术展示了独特的优势,通过引入氧空位、硫空位等缺陷结构,其可以精准调控材料的电子结构,显著提升导电性和电化学性能。同时,等离子体技术能够在低温下对材料实现快速合成与表面改性,简化传统工艺并有效降低能耗。因此,对等离子体技术在储能材料中的应用进行了系统地总结,重点分析了其在缺陷工程、元素掺杂和表面改性等方面的作用。研究表明,等离子体处理显著提高了材料的导电性、离子扩散能力及循环稳定性,特别是在锂离子电池、钠离子电池和超级电容器等储能装置中的应用,展示了优异的性能提升。此外,等离子体技术能够实现高效的杂质掺杂,确保材料结构的均匀性并增强其电化学活性。尽管等离子体技术在实验室中取得了显著的成果,但大规模应用仍面临设备成本、反应精度控制等挑战。未来的研究应聚焦于工艺优化、成本控制及结合其他先进技术,以推动等离子体技术在储能材料中的产业化应用,助力可再生能源系统的可持续发展。

    Abstract:

    As global demand for renewable energy continues to rise, the development of efficient, environmentally friendly, and cost-effective electrochemical energy storage technologies has become a key research focus. The performance of these devices largely depends on the properties of energy storage materials, especially electrode materials, which directly influence energy density, power density, and cycle life. However, traditional methods for material synthesis and modification are often constrained by high energy consumption, complex processes, and environmental pollution. Plasma technology, an emerging material processing technique, offers unique advantages. By introducing defects such as oxygen and sulfur vacancies, plasma can effectively modulate the electronic structure of materials, improving both conductivity and electrochemical performance. Moreover, plasma treatment enables rapid synthesis and surface modification at low temperatures, simplifying traditional processes and reducing energy consumption. This paper systematically reviews the application of plasma technology in energy storage materials, focusing on its role in defect engineering, elemental doping, and surface modification. Research shows that plasma treatment significantly improves materials’ conductivity, ion diffusion, and cycling stability, particularly in applications such as lithium-ion batteries, sodium-ion batteries, and supercapacitors. Furthermore, plasma technology facilitates efficient impurity doping, ensuring uniform material structures and boosting electrochemical activity. Despite its promising laboratory performance, challenges such as high equipment costs and difficulties in controlling reaction precision continue to limit large-scale application. Future efforts should sim to optimize plasma processes, reduce costs, and integrate other advanced technologies to accelerate the industrialization of energy storage materials, thereby supporting the gowth of renewable energy systems.

    参考文献
    相似文献
    引证文献
引用本文

姚嘉诺,梁丽涛,谭诗怡,陈柔彤,佘乐延,曹峻豪,秦天航,黎立德,于峰,张国臻.等离子体技术在储能材料中的应用:从缺陷工程到性能优化[J].材料研究与应用,2024,18(6):849-865.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-23
  • 出版日期:
文章二维码
材料研究与应用 ® 2025 版权所有