《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
多维度微混合芯片设计与应用研究进展
CSTR:
作者:
作者单位:

1.石河子大学化学化工学院/化工绿色过程兵团重点实验室,新疆 石河子832003;2.广东省科学院新材料研究所/现代材料表面工程技术国家工程实验室/广东省现代表面工程技术重点实验室,广东 广州 510650;3.沈阳工业大学材料科学与工程学院,辽宁 沈阳 110870;4.温州大学机电工程学院,浙江 温州 325035

作者简介:

罗永皓,博士,副教授,研究方向为特种加工、微流控技术及3D打印。E-mail:453277049@qq.com。

通讯作者:

中图分类号:

TQ021

基金项目:

石河子大学创新发展专项(CXFZ202204);广东省科学院发展专项资金项目(2022GDASZH-2022010107;2022GDASZH-2022010203-003;2019BT02C629);广州市科技计划项目(202007020008;202102020327)


Research Progress in Design and Application of Microfluidic Hybrid Chips
Author:
Affiliation:

1.School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China;2.National Engineering Laboratory of Modern Mate-rials Surface Engineering Technology/Guangdong Provincial Key Laboratory of Modern Surface Engineering Technol-ogy/Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;3.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;4.School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微尺度下的流体混合与传统宏观流体混合有显著不同,由于内壁摩擦力、粘滞阻力及表面张力等特性的影响被放大,微尺度流体混合展现出特殊规律。近年来,微混合芯片因混合效率高、液体接触面积大、输出通量高、可自动化控制及制造成本低廉的优势,在化工、材料及生物医学等领域中得到快速发展。由于微混合芯片的流道尺寸大多在毫米级别以下,有的甚至只有几微米到几十微米,因此流体粘度对流动的影响更加显著。流场中流速的扰动会因粘滞力而衰减,使得流体流动趋于稳定,微流道内流体的流动表现为层流状态,导致微流体内部扰流效应具有一定的困难性。因此,为实现微流体的充分混合,开发快速高效微流体混合器是基本前提,突破微小尺度流道内流体的层流界限,促进微通道中的全方位扰流以达到充分混合状态则是关键。以被动式微混合器的研究进展作为切入点,从芯片的设计维度出发,递进式地介绍了多维度微混合芯片设计的发展历程,总结了低维度到高维度的基本结构设计思路及功能的专一化。归纳了微混合技术在微 化工领域、生物医药领域及新能源领域中应用和研究进展,并讨论了在其他领域中应用的可行性。微混 合技术凭借广泛的应用场景,在未来将有巨大的发展潜力和应用空间。

    Abstract:

    Different from the traditional macroscopic fluid mixing process, microscale fluid mixing follows unique principles due to the amplified effect of surface tension, friction, and viscous resistance. Due to the advantages of high mixing efficiency, large liquid contact area, high output flux, automated control, and low manufacturing cost, micromixing chips have been rapidly developed in recent years in fields such as chemicals, materials, and medicine. The typical runner sizes of these chips are below the millimeter level, often only a few micrometers to tens of micrometers. At this scale, the influence of fluid viscosity is more significant, leading to a laminar flow, which makes achieving thorough fluid mixing challenging. Therefore, achieving complete mixing of microfluidic is essential for developing fast and efficient micromixers. The key is to overcome the laminar flow regime within the micro-channels to facilite thorough mixing. This paper takes the research progress of passive micromixers as a starting point, introducing their development from the design perspective. It summarizes the structural design principles from low to high dimensions and the specialization of functions. Furthermore, it reviews the applications of micromixing technology in microchemicals, biomedicine and new energy, and discusses its potential feasibility in other fields. With its wide range of application scenarios, micromixing technology holds great potential for future development and application prospects.

    参考文献
    相似文献
    引证文献
引用本文

罗永皓,张伟业,王志,朱晓武,陈兴驰,董东东.多维度微混合芯片设计与应用研究进展[J].材料研究与应用,2024,18(4):509-521.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-26
  • 出版日期:
文章二维码
材料研究与应用 ® 2025 版权所有