《材料研究与应用》编辑部欢迎您!
2025年4月3日 加入收藏 | 设为主页 
扩链改性对PBAT挤出发泡成型的影响研究
CSTR:
作者:
作者单位:

1.中山大学材料科学与工程学院,广东 广州 510275;2.中山大学南昌研究院,江西 南昌 330224

作者简介:

黄瀚毅,硕士研究生,研究方向为聚合物发泡与多孔材料。E-mail:huanghanyi@sysunc.com。

通讯作者:

翟文涛,博士,教授,研究方向为聚合物微孔发泡材料、聚合物复合材料和聚合物热塑弹性体/橡胶材料的加工、成型及性能。E-mail:zhaiwt3@mail.sysu.edu.cn。

中图分类号:

TQ33

基金项目:

国家自然科学基金项目(52173053;51873226);中央高校基础研究基金项目(20lgzd02)


Study on the Influence of Chain Extension Modification During a PBAT Extrusion Foaming Process
Author:
Affiliation:

1.School of Materials Science and Engineering, Sun Yat-sen university, Guangzhou, 510275, China;2.Nanchang Research Institute, Sun Yat-Sen University, Nanchang 330224, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    挤出发泡是一种可制备轻量化聚合物发泡材料如发泡网套、发泡片材等的连续加工工艺。近年来在“双碳”政策背景下,市面常见的水果网套原材料聚乙烯(PE),作为典型不可生物降解的石油基聚合物,已逐渐被可生物降解材料替代。聚对苯二甲酸-己二酸丁二醇酯(PBAT)是一种高强高韧且可生物降解材料,其制品广泛应用于包装、农业等领域。探究了扩链改性对PBAT的流变行为、结晶行为以及挤出发泡成型过程的影响。结果表明,扩链改性使得支化结构逐渐增加并诱导PBAT链网络发生凝胶化,PBAT的基体模量增加。此外,扩链剂可以充当异相成核剂,导致扩链改性PBAT的结晶温度升高超30 ℃。挤出发泡成型结果表明,随着扩链剂含量增加,网套样品的膨胀倍率逐渐降低,横向延展性先增加后降低,横向拉伸断裂伸长率在扩链剂的质量分数为0.25%时达到600%。因此,在挤出发泡过程中,采用扩链改性的方法可以快速提高PBAT的熔体强度,提升PBAT基体在发泡膨胀过程限制气体快速逃逸的能力。同时,扩链改性可以快速提高PBAT在降温结晶过程的结晶温度,这有利于PBAT在口模处挤出后更快地结晶从而稳定泡孔。然而,过度的扩链改性将造成PBAT发泡网套的膨胀倍率过低。结合扩链改性对PBAT挤出发泡膨胀过程及降温结晶过程的影响,当扩链剂质量分数为0.25%、挤出发泡机加工温度分别为130 ℃(加料区)-180 ℃-180 ℃(进气口)-145 ℃-110 ℃-110 ℃-115 ℃(换网器)-115 ℃(模头)、进气压力约为18 MPa时,PBAT网套的综合性能较为合适。其中,网套的密度为0.03 g·cm-3,发泡倍率φ约为36倍,横向拉伸断裂伸长率超过600%,具备实际应用价值。

    Abstract:

    Polybutylene terephthalate-adipate (PBAT) is a high-strength, tough and biodegradable material, and its products are widely used in packaging and agriculture. This study investigates the effects of chain extension modification on the rheological behavior, crystallization behavior, and extrusion foam molding process of PBAT. The results showed that the chain extension modification gradually increases in the branched structure and induced gelation of the PBAT chain network, resulting in a gradual increase in the matrix modulus of PBAT. Additionally, the crystallization temperature of the chain extension modified PBAT increased more than 30 ℃ because the chain-extender (CE) could act as a heterogeneous nucleating agent. The results of extrusion foam molding showed that with the increase of CE content, the expansion ratio of the PBAT mesh gradually decreased but the transverse ductility initially increased and then decreased, and the transverse tensile elongation at break reached 600% at a CE content of 0.25 wt.% of CE. Therefore, in the extrusion foaming process, the use of chain expansion modification can rapidly increase the melt strength of PBAT, thereby enhancing the ability of the PBAT matrix to limit the rapid escape of gases during the foaming process. At the same time, the chain expansion modification can rapidly increase the crystallization temperature of PBAT during the cooling crystallization process, which is conducive to the faster crystallization of PBAT after extrusion at the die to stabilize the foam pores. However, excessive chain expansion modification would result in too low expansion ratio of the PBAT mesh. Therefore, in combination with the effect of chain expansion modification on the expansion process and the cooling crystallization process of PBAT extrusion foaming, with the content of CE of 0.25 wt%, the processing temperature of the extrusion foaming machine at 130 ℃ (feed hopper)-180 ℃- 180 ℃ (air inlet)-145 ℃-110 ℃-110 ℃-115 ℃-115 ℃ (die), and the inlet pressure of about 18 MPa, the comprehensive performance of the PBAT mesh is more suitable. Among them, the density of the mesh was 0.03 g·cm-3, the foaming ratio φ was about 36, and the transverse tensile elongation at break was more than 600%, which has the practical application value.

    图1 扩链改性PBAT的剪切流变行为Fig.1 Shear rheological behavior of a chain-extension-modified PBAT
    图2 扩链改性前后PBAT的储能模量G和损耗模量G 的频率依赖性Fig.2 The frequency dependence of storage modulus G and loss modulus G of the neat and modified PBAT
    图3 扩链改性前后PBAT的损耗因子tan δ的频率依赖性Fig.3 The frequency dependence of the loss factor tan δ of the neat and modified PBAT
    图4 扩链改性前后PBAT的Cole-Cole图Fig.4 The Cole-Cole plot of the neat and modified PBAT
    图5 扩链改性对PBAT结晶行为的影响Fig.5 Effect of chain extension modification on the crystallization behavior of PBAT
    图6 扩链改性对PBAT网套的宏观形貌和膨胀倍率的影响Fig.6 Effect of chain extension modification on macroscopic morphology and expansion ratio of PBAT mesh
    图7 扩链改性PBAT在不同成型温度的膨胀倍率Fig.7 Expand ratio of the neat and modified PBAT at different forming temperatures
    图8 扩链改性前后的PBAT网套的横向延展性Fig.8 The transverse ductility of the neat and modified PBAT mesh
    图9 PBAT网套的微观形貌Fig.9 The microscopic morphology of PBAT mesh
    参考文献
    [1] YAO S, GUO T, LIU T, et al. Good extrusion foaming performance of long-chain branched PET induced by its enhanced crystallization property[J]. Journal of Applied Polymer Science, 2020, 137(41): e49268.
    [2] WAN C, SUN G, GAO F, et al. Effect of phase compatibility on the foaming behavior of LDPE/HDPE and LDPE/PP blends with subcritical CO2 as the blowing agent[J]. The Journal of Supercritical Fluids, 2017, 120: 421-431.
    [3] KELLY C A, MURPHY S H, HILLERSTR?M A, et al. Production of biodegradable foams using supercritical CO2[J]. Polymer-Plastics Technology and Engineering, 2014, 53(11): 1169-1177.
    [4] TIAN H L, WANG Z P, JIA S L, et al. Biodegradable foaming material of poly(butylene adipate-co-terephthalate) (PBAT)/poly(propylene carbonate) (PPC)[J]. Chinese Journal of Polymer Science, 2022, 40(2): 208-219.
    [5] 焦洋,王龙震,蔡卓瑞,等.高发泡倍率PBAT泡沫的制备及回弹性能的探究[J].中国塑料,2023,37(9):19-27.
    [6] 周锦,南婧文,黄文健,等.PLA/PBAT拓扑扩链体系的发泡性能[J].工程塑料应用,2023,51(4):29-35.
    [7] 王杰,王泽云,辛德华,等.PBAT改性及其发泡材料的研究进展[J].高分子通报,2023,36(2):191-199.
    [8] 陈壮鑫,雷彩红,薛南翔,等.发泡工艺对PLA/PBAT复合材料发泡结构的影响[J].塑料,2022,51(5):102-107.
    [9] 陈豪,吴志强,姜启运,等.聚乳酸/聚己二酸对苯二甲酸丁二醇酯共混发泡材料的制备及性能研究[J].中国塑料,2023,37(7):1-8.
    [10] 欧萱乐,陈壮鑫,董智贤,等.发泡工艺对PBAT泡沫结构和压缩性能的影响[J].塑料工业,2021,49(10):28-32.
    [11] 宋敬思,王贤增,周洪福,等.PBAT的扩链反应及其微孔发泡行为研究[J].中国塑料,2018,32(11):42-48.
    [12] 卢波,周洪福,季君晖,等.聚己二酸-对苯二甲酸丁二酯泡沫塑料的制备[J].合成树脂及塑料,2018,35(1):10-14.
    [13] 冀峰,龚炜华,张艳,等.超临界二氧化碳釜压发泡法制备生物可降解PBAT发泡颗粒[J].中国塑料,2022,36(5):122-126.
    [14] 赵悦,张殿奇,温时宝,等.PBAT/PLA复合材料的微孔发泡性能[J].塑料,2019,48(4):44-48.
    [15] 谢茂卿,杜俊威,张世豪,等.超临界CO2辅助聚己二酸对苯二甲酸丁二醇酯/聚乳酸珠粒发泡[J].高分子材料科学与工程,2022,38(8):66-74.
    [16] 孙苗苗,尹甜,蒋志魁,等.PBAT/PGA共混材料制备及其发泡行为研究[J].塑料科技,2022,50(12):59-62.
    [17] SHI H, ZHU Y, JU Q, et al. Enhanced properties of starch based foams with modified starch/polyester blend as masterbatch[J]. Journal of Applied Polymer Science, 2022, 139(39): e52951.
    [18] STANDAU T, CASTELLON S M, DELAVOIE A, et al. Effects of chemical modifications on the rheological and the expansion behavior of polylactide (PLA) in foam extrusion[J]. E-Polymers, 2019, 19(1): 297-304.
    [19] BAUMGAERTEL M, SCHAUSBERGER A, WINTER H H. The relaxation of polymers with linear flexible chains of uniform length[J]. Rheologica Acta, 1990, 29(5): 400-408.
    [20] 郑强.高分子流变学[M]. 北京: 科学出版社, 2020.
    引证文献
引用本文

黄瀚毅,田方伟,赵丹,翟文涛.扩链改性对PBAT挤出发泡成型的影响研究[J].材料研究与应用,2024,18(3):419-425.

复制
分享
文章指标
  • 点击次数:49
  • 下载次数: 1259
  • HTML阅读次数: 44
  • 引用次数: 0
历史
  • 收稿日期:2024-02-29
  • 在线发布日期: 2024-07-08
文章二维码
材料研究与应用 ® 2025 版权所有