《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
微挤出发泡堆叠成型制备多孔聚酯弹性体制件及其性能研究
作者:
作者单位:

中山大学材料科学与工程学院,广东 广州 510000

作者简介:

王泽林,硕士研究生,研究方向为聚合物发泡材料和聚合物功能多孔材料。E-mail:wangzlin7@mail2.sysu.edu.cn。

通讯作者:

赵丹,博士,实验师,研究方向为多孔功能材料。E-mail:zhaod29@mail.sysu.edu.cn
翟文涛,博士,教授,研究方向为聚合物微孔发泡材料、聚合物复合材料和聚合物热塑弹性体/橡胶材料的加工、成型及性能。E-mail:zhaiwt3@mail.sysu.edu.cn。

中图分类号:

TQ322.4

基金项目:

国家自然科学基金项目(52173053;51873226);中央高校基础研究基金项目(20lgzd02)


Study on the Preparation and Properties of Porous Polyester Elastomer Components via Micro-Extrusion Foaming Stacking
Author:
Affiliation:

School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510651, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在聚合物弹性体内部及表面引入多孔结构能够显著提升其弹性,同时兼具轻质、高比表面积、多功能化等优点。开发更经济、环保、简便及满足多样化需求的多孔制件制备方法具有重要意义。与传统制造技术相比,3D打印技术具有更高的成型自由度,在多样化定制、精细制造及高尖端领域具有明显优势。微挤出发泡联合熔融沉积成型(FDM)3D打印技术和高压流体发泡技术能够实现复杂三维多孔制件的原位发泡制造,是制备多孔发泡制件的有效方法。采用微挤出发泡技术,以高压CO2作为物理发泡剂,制备了具有不同结构的多孔聚酯弹性体(TPEE)制件,并系统研究了多孔制件的弹性性能。研究结果表明,引入微发泡结构可使制品的减重最高达34.17%,通过针对性调节打印参数能够在长宽高方向实现FDM打印级别的精度水平。相较于未发泡制件,发泡多孔制件的落球回弹率明显增加,硬度和刚度大幅降低,制件柔软度和舒适性增加,压缩形变恢复率更高。采用微挤出发泡堆叠成型工艺制备的多孔制件内部及表面引入了微孔结构,增强了打印层之间的粘结强度,使其具有轻量化、高弹性、高柔软度和高精度成型的特点。此方法拓宽了多孔制件的应用领域,同时在低应力和应力敏感的应用场景显现潜在的应用前景。

    Abstract:

    Introducing a porous structure into the interior and surface of polymer elastomers can significantly enhance their elasticity, while also offering advantages such as lightweight, high specific surface area, and multifunctionality. Therefore, researching methods for preparing porous parts that are more economical, environmentally friendly, simple, and capable of meeting diverse needs is of significant importance. Compared to traditional manufacturing techniques, 3D printing technology offers greater freedom in shaping, with evident advantages in diverse customization, precision manufacturing, and high-end applications. In recent years, it has been demonstrated that the combination of micro-extrusion foaming with fused deposition modeling (FDM) 3D printing technology and high-pressure fluid foaming can achieve in-situ foaming manufacturing of complex three-dimensional porous parts, proving to be an effective method for fabricating porous foamed parts. In this study, micro-extrusion foaming technology was employed to prepare porous thermoplastic polyester elastomer (TPEE) parts with different structures using high-pressure CO2 as a physical foaming agent. The elastic performance of porous parts was systematically studied. The research findings indicate that the introduction of micro-foaming structure can reduce the weight of the products by up to 34.17%, achieving FDM printing-level precision in the length, width, and height directions. Compared to non-foamed parts, the rebound resilience of porous parts significantly increased, while hardness and stiffness greatly decreased. The parts exhibit increased softness and comfort, and higher compressive deformation recovery rate. The introduction of microporous structures into the interior and surface of porous parts prepared using the micro-extrusion foaming stacking molding process enhances the bonding strength between printing layers, resulting in lightweight, improved elasticity, soft touch, and high-precision molding characteristics. This broadens the application scope of porous parts and demonstrates potential application prospects in low-stress and stress-sensitive scenarios.

    参考文献
    相似文献
    引证文献
引用本文

王泽林,周梦楠,陈哔炽,江俊杰,黄瀚毅,王亮,李耀宗,田方伟,赵丹,翟文涛.微挤出发泡堆叠成型制备多孔聚酯弹性体制件及其性能研究[J].材料研究与应用,2024,18(3):387-396.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-08
  • 出版日期:
材料研究与应用 ® 2024 版权所有