《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
粉末粒径对等离子喷涂固体氧化物燃料电池阳极微观结构及性能的影响
作者:
作者单位:

1.广东工业大学材料与能源学院,广东 广州 510006;2.广东省科学院新材料研究所/现代材料表面工程技术国家工程实验室/广东省现代表面工程技术重点实验室,广东 广州510650

作者简介:

朱志刚,硕士研究生,研究方向为等离子喷涂制备固体氧化物燃料电池阳极,E-mail:moshionzhu@163.com。

通讯作者:

宋琛,博士,高工,研究方向为等离子喷涂制备固体氧化物燃料电池,E-mail:phd.songchen@gmail.com。

中图分类号:

TB34

基金项目:

国家自然科学基金项目(52201069);中国科协青年人才托举项目(2022QNRC001);广州市科协青年人才托举项目(QT20220101246);广州市基础与应用基础研究项目(202201010219);广东省科学院项目(2022GDASZH-2022010203-003, 2022GDASZH-2022010201, 2019GDASYL-0102007),广东省自然基金项目(2020B1515020036)


Effect of Powder Particle Size on Anode Microstructure and Performance for Plasma-Sprayed Solid Oxide Fuel Cell
Author:
Affiliation:

1.School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;2.Institute of New Materials, Guangdong Academy of Sciences/ National Engineering Laboratory for Modern Materials Surface En-gineering Technology/Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology,Guangzhou 510650, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为固体氧化物燃料电池阳极材料,选用NiO/Gd0.2Ce0.8O1.9(GDC)替换传统NiO/Y0.16Zr0.92O2.08,其可有效扩展三相反应界面,提高电池性能。采用大气等离子喷涂技术,通过调控NiO/GDC团聚粉末粒径,研究阳极微观结构演变及对电池性能的影响。结果表明:粉末粒径影响粉末的熔化程度,当d50=24.7 μm的小粒径粉末熔化充分时,涂层中会暴露更多的GDC,增加反应活性位点;d50=45.2 μm的大粒径粉末熔化不充分时,堆叠产生的间隙会造成涂层中裂纹和孔洞增多,表现出更大的气通量,泄漏率为14.8×10-6 cm4?gf-1?s-1;小粒径和大粒径粉末阳极形成的单电池输出峰功率密度接近,在800 ℃时分别达到1 158.46和1 147.0 mW?cm-2。阻抗谱拟合结果揭示了阳极界面电荷转移和气体传输能力的差异。通过分析粉末粒径对电化学性能的作用机理可知,小粒径粉末阳极具有更多界面活性位点而表现出更快的电荷转移速度,大粒径粉末阳极具有优异的透气性,能透过更多燃料而有效激发活性位点。因此,在大小粒径粉末阳极上形成的电池几乎表现出相同的电化学性能。

    Abstract:

    As a solid oxide fuel cell anode material, NiO/Gd0.2Ce0.8O1.9 (GDC) is used to replace the conventional NiO/Y0.16Zr0.92O2.08, which can effectively extend the triple-phase boundaries and improve the cell performance. In this paper, the evolution of anode microstructure and its effect on cell performance is studied by regulating the particle size of NiO/GDC agglomerated powder via atmospheric plasma spraying technique. The results show that the powder particle size affects the melting degree, and the small particle size powder melts sufficiently so that more GDC is exposed in the coating to increase the reactive sites. The large particle size powder melts insufficiently, and particle stacking creates gaps leading to more cracks and pores in the coating, thus exhibiting a larger gas flux with a leakage rate of 14.8×10-6 cm4·gf-1·s-1. The output peak power density of single cells formed by anode with small and large particle sizes is close to each other, reaching 1 158.46 and 1 147.0 mW·cm-2 at 800 °C. The impedance spectrum fitting reveals the difference in interfacial charge transfer and gas transport capability of the anodes. By analyzing the mechanism of powder particle size on electrochemical performance, it was found that the small-particle-size anode has more interfacial active sites and shows a faster charge transfer rate, while the large-particle-size anode has excellent gas permeability and can pass through more fuel to effectively excite active sites. Therefore, the two cells exhibit almost the same electrochemical performance.

    参考文献
    相似文献
    引证文献
引用本文

朱志刚,宋琛,胡永俊,邓畅光,刘太楷,文魁,董东东,毛杰,刘敏.粉末粒径对等离子喷涂固体氧化物燃料电池阳极微观结构及性能的影响[J].材料研究与应用,2023,17(2):329-337.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-24
  • 出版日期:
文章二维码
材料研究与应用 ® 2024 版权所有