《材料研究与应用》编辑部欢迎您!
加入收藏 | 设为主页 
掺硼金刚石薄膜表面高分散镍纳米颗粒的制备
作者:
作者单位:

1.江西科技师范大学材料与机电学院,江西 南昌 330013;2.江西科技师范大学/江西省材料表面工程重点实验室,江西 南昌 330013

作者简介:

王彩华(1999-),女,湖南邵阳人,硕士研究生,研究方向为电催化,Email:1826855246@qq.com。

通讯作者:

中图分类号:

TQ426.6

基金项目:

江西省研究生创新基金项目(YC2021-S751)


Preparation of Highly Dispersed Nickel Nanoparticles on the Surface of Boron-Doped Diamond Films
Author:
Affiliation:

1.School of Materials and Mechanical &Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China;2.Jiangxi Science and Technology Normal University/Jiangxi Key Laboratory of Surface Engineering, Nanchang 330013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    化学气相沉积制备掺硼金刚石薄膜因具有电化学势窗口宽、化学稳定性高和抗污能力强等特征,在电化学领域中有广阔的应用前景。用高分散金属纳米颗粒对掺硼金刚石(BDD)薄膜进行表面修饰,可显著提高其比表面积和活性位点,提升掺硼金刚石薄膜的电化学性能。采用混合酸对掺硼金刚石薄膜进行表面改性,获得亲水性表面,继而生长镍金属框架材料(Ni-MOFs),热处理后获得镍纳米颗粒。借助接触角测定仪对薄膜表面终端进行分析,并通过扫描电子显微镜对纳米镍颗粒修饰的BDD薄膜进行表征。结果表明:BDD表面从以氢端基为主的H-BDD转变为以氧基团为主的O-BDD表面,接触角由70 °减小为33.7 °;纳米镍颗粒分散均匀,粒径大小为5—12 nm,颗粒密度约为3.5×106 cm-2

    Abstract:

    Boron-doped diamond films prepared by chemical vapor deposition have broad application prospects in the field of electrochemistry because of their wide electrochemical potential window, high chemical stability, and strong anti-fouling ability. Using highly dispersed metal nanoparticles to modify the surface of the boron-doped diamond film can significantly increase its specific surface area and active sites, and improve the electrochemical performance of the boron-doped diamond film. In this paper, boron-doped diamond films were modified by mixing acid and hydrophilic surfaces were obtained. Then nickel metal frame materials (Ni-MOFs) were grown, and nickel nanoparticles were formed after heat treatment. The surface terminals of BDD films were analyzed with the help of a contact angle measuring instrument, and the BDD films modified with nano-nickel particles were characterized by scanning electron microscopy. The results showed that the BDD surface changed from H-BDD dominated by the hydrogen terminal group to O-BDD dominated by the oxygen group, and the contact angle decreased from 70 ° to 33.7 °. The nano-nickel particles were evenly dispersed with particles size of 5-12 nm and the nanoparticle density was about 3.5×106 cm-2.

    参考文献
    相似文献
    引证文献
引用本文

王彩华.掺硼金刚石薄膜表面高分散镍纳米颗粒的制备[J].材料研究与应用,2023,17(1):136-141.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-02
  • 出版日期:
文章二维码
材料研究与应用 ® 2024 版权所有